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Abstract: Every event has an extent in time, which is usually
described by crisp time intervals. However, under some circum-
stances, temporal extents of events are imperfect, and therefore can-
not be adequately modelled by crisp time intervals. Rough sets and
fuzzy sets are two frequently used tools for representing imperfect
temporal information. In this paper, we apply a two-dimensional
representation of crisp time intervals, which is called the Triangular
Model (TM), to investigate rough time intervals (RTIs) and fuzzy
time intervals (FTIs). With this model, RTIs and FTIs, as well as
their temporal relations, can be represented as graphics (i.e. discrete
geometries or continuous fields) in a two-dimensional time space.
Compared to the traditional linear representation of time intervals,
we found that TM provides a more compact and clearer representa-
tion of imperfect time intervals and relations. Moreover, temporal
queries of imperfect intervals can be graphically addressed in TM,
which is closer to human intuition than mathematical expressions.
As human minds are more efficient in perceiving and processing
graphic representations than numerical representations, we believe
TM can be applied as a valuable assistant tool for analysing and
reasoning about imperfect time intervals.

Keywords: rough set, rough time interval, fuzzy set, fuzzy
time interval, the Triangular Model, temporal relation.

1. Introduction

Recently, a lot of research has been done on representing and reasoning about
time intervals. Most of this work focused on crisp time intervals (CTI), namely,
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time intervals that are bounded by a beginning and ending (e.g. Allen, 1983;
Allen and Hayes, 1985; Ladkin, 1987; Galton, 1990; Freksa, 1992). However,
under some circumstances, these CTIs cannot adequately describe temporal oc-
cupations of events and processes. For example, due to imprecise information,
the beginning and end of the interval is known to be within certain ranges.
However, the exact beginning and end cannot be defined. In these cases, time
intervals of events can be represented by rough sets (see Pawlak, 1982, 1991)
which classify the upper and lower approximations of the interval. The thus ob-
tained time intervals are called rough time intervals (RTI). On the other hand,
some events may start or end gradually and therefore their beginning and end
times cannot be pinned to exact time stamps. Intervals of this kind of events
can be described by fuzzy sets (see Zadeh, 1996a,b) through the quantification
of the graded truth of whether a time point is a member of the interval, bring-
ing the concept of fuzzy time interval (FTI). Currently, a lot of disciplines (e.g.
archaeology, geography, psychology, and philosophy) are faced with the problem
of handling imperfect temporal information, as is reflected in many contribu-
tions on representing and reasoning about RTIs (e.g. Bittner, 2002; Bassiri et
al., 2009) and FTIs (e.g. De Caluwe et al., 1997, 1999; Nagypál and Motik, 2003;
Ohlbach, 2004; Schockaert and De Cock, 2008; Garrido et al., 2009). However,
most of the work is based on the linear concept of time, in which time intervals
are modelled as linear segments on the numerical line. Kulpa (1997a, 2006) pro-
posed an alternative representation of CTIs, in which time intervals are mapped
to points in a two-dimensional space. Based on Kulpa’s work, Van de Weghe
(2007) named it the Triangular Model (TM) and applied it in an archaeolog-
ical context. De Tré et al. (2006) made the first trial of handling imperfect
time intervals by TM and applied it to a historical database. In these studies,
TM has already shown its potential in delivering compact and human-friendly
visualisations of time intervals. Yet, at present, the power of TM in handling
FTIs and RTIs has not been fully revealed. Therefore, in this paper, we will
comprehensively study the use of TM in handling RTIs and FTIs.

In the remainder of the paper, we first discuss the two types of imperfect
time intervals, namely fuzzy time intervals and rough time intervals (Section 2).
Further, after a brief introduction of the Triangular Model (Section 3), we will
show how TM can be used to handle rough time intervals (Section 4) and fuzzy
time intervals (Section 5), as well as their temporal relations. In Section 6, this
new model is then applied to an archaeological case in order to illustrate its
analytical power. Finally, conclusions are drawn and future work is proposed.

2. Rough and fuzzy time intervals

In philosophy, there are two opposite theories of time, namely, absolute time and
relative time (Lin, 1991). An interesting overview of other theories is given by
Knight and Ma (1993), who propose a consensus glossary of temporal concepts.
In the absolute concept, time is totally decided by numbers on the time line
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and is independent of anything else. The basic time units are time intervals,
which are defined by two numbers on the time line. Because the time line
underlying most calendar systems can be modelled as a single numerical axis,
which is isomorphic to real numbers R, a time interval is usually understood
as an interval of R, bounded by two real numbers I− and I+, with I− < I+.
Absolute time is a machine-oriented concept, because it is measured by clocks,
and can be easily recorded and processed by computers. Therefore, the absolute
concept of time is widely accepted in computer science and artificial intelligence
(Shoham and Goyal, 1988; Vila, 1994). In contrary to absolute time, the relative
concept claims that time is determined by events and properties of time must be
defined by investigating properties of events. This concept is based on human
perception of time, which is often expressed by when-clauses in human language.
For example, in the sentence ‘Katrina tornado happened when George W. Bush
was the president’, the event ‘Bush was the president’ indicates the period during
which Katrina tornado happened. Theoretically, relative time may be expressed
in terms of absolute time. In other words, an event perceived by human beings
always corresponds to a specific interval in the absolute time line. For example,
the period, when George W. Bush was the president corresponds to the interval
between January 20, 2001 and January 20, 2009. Such matches between relative
time and absolute time broadly exist in daily life. All historical events are linked
to specific past time intervals and all plans in people’s schedules occupy specific
intervals in the future. However, difficulties in matching relative time (intervals
defined by events) to absolute time (intervals defined by numbers on the time
line) are likely to happen. In these cases, the temporal location of events cannot
be perfectly described by a CTI in the absolute time. In order to solve these
problems, scientists applied rough sets and fuzzy sets to represent time intervals
of these events, bringing concepts of RTI and FTI. In the following two sub-
sections, we will introduce the concepts of rough and fuzzy time intervals.

2.1. Rough time interval

Due to incomplete information, sometimes the temporal location of an event
cannot be decisively matched to a CTI in absolute time. It may be known that
the event started within a certain range and ended within a certain range. How-
ever, information of the exact beginning time and ending time is not available.
Scientists applied rough sets to describe intervals of such events (e.g. Bittner,
2002; Bassiri et al., 2009), by defining upper approximations and lower approx-
imations of intervals that are occupied by events. These intervals, described by
rough sets, are called rough time intervals (RTI). Generally speaking, incomplete
information may have two causes. The first one is the granularity of descrip-
tions. In daily life, time intervals are usually described with certain partitions
of the time line (e.g. year, month, days, and hours). Sometimes, these partitions
may be too coarse to reflect the exact intervals of events. For instance, the sen-
tence ‘Bush started his presidency in 2001 and ended it in 2009’ is correct with
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respect to the yearly granularity. Nevertheless, this sentence lacks information
on the exact date when Bush started/finished his presidency. Bittner (2002)
applied the rough set theory to represent the relations between time intervals
and partitions of the time line. Cells of the partition that are definitely occupied
by the time interval form the lower approximation. Cells that may be occupied
by the time interval constitute the upper approximation. The second cause of
incomplete information stems from the data acquisition process. In many ob-
servation activities, data are acquired at discrete time stamps. Through these
snapshots, the time interval of an event can only be approximately decided.
Remote sensing, for instance, relies on images or photographs taken at discrete
time stamps by which one can determine the state of an object. A specific state
of an object can be understood as an event, for instance, the existence of a
building. From discrete images, one can determine whether a building exists
at specific time stamps. However, existence of the building between two time
stamps is uncertain. With these discrete observations, the interval of the exis-
tence of the building can be described by an upper approximation and a lower
approximation (Bassiri et al., 2009).

The basic idea of a rough set is classifying a set R into a lower approxima-
tion R and an upper approximation R according to a subset of its attributes.
Within R, elements are definitely members of a target set X ; while outside R,
elements are not members of X , with R ⊆ R. The difference between R and R

forms the boundary regions. If the boundary region is nonempty, i.e. R 6= R,
the set R is said to be rough; otherwise R is a crisp set. In the boundary re-
gion, elements cannot be decisively classified as members or non-members of X .
Since time intervals are considered as convex subsets of real numbers (R), an
imprecise interval I can also be modelled by an upper approximation I and a
lower approximation I, with I ⊆ I (Fig. 1). We call such a pair of I and I a
Rough Time Interval (RTI), denoted as IR. Both I and I are close sets because
their left and right extremes are parts of themselves. In our notion, a rough
time interval is not a special kind of time interval. It is essentially an imprecise
description of a crisp interval which cannot be precisely described due to lack
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Figure 1. The linear representation of rough time intervals
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of information. Since a CTI can be considered as a crisp subset of R, an RTI
can be considered as a rough subset of R. Time points in I definitely belong
to I, whereas time points out of I definitely do not belong to I. In between I

and I, there are two boundary intervals (B−, B+) with time points that cannot
be decided whether they belong to I or not. I is the largest possibility of I,

which is bounded by the earliest possibility of the beginning I
−

and the latest

possibility of the end I
+
. I is the shortest possibility of I, which is bounded by

the latest possibility of the beginning I− and the earliest possibility of the end
I+.

2.2. Fuzzy time interval

Difficulties in matching events to intervals in absolute time may originate from
the fuzzy nature of events. Some events may start or end gradually, and thus
lack distinct beginning or ending time. For example, it is difficult to decide when
the Industrial Revolution started and finished. Though some historians like to
use the invention of the steam engine to mark its beginning, it is unnatural
to understand that the revolution suddenly started when the steam engine was
invented. Other examples are clauses like ‘when I was young’. It does not
make sense to consider a specific day, after which one is suddenly old. Intervals
of these fuzzy events cannot be adequately described by CTIs. The fuzzy set
theory is a frequently used tool for modelling intervals of such fuzzy events
(see Nagypál and Motik, 2003; Ohlbach, 2004; Schockaert and De Cock, 2008;
Schockaert et al., 2008). It extends conventional (crisp) set theory and handles
the concept of partial truth, i.e. graded truth values between 0 (completely
false) and 1 (completely true) (Zadeh, 1996a,b). A fuzzy set A is modelled by
a membership function µA(x) that maps every real number x in R to a real
number between 0 and 1, representing the truth of whether x is a member of
A, or to what extent x belongs to A. Besides fuzzy events mentioned above,
fuzzy set can also express uncertainties of non-fuzzy events in the framework of
possibility theory (Dubois et al., 1991, 2003; Garrido et al., 2009). But in this
paper, we are not going to investigate FTIs in the possibilistic context, which
will be left for future work.

Following the principles of the fuzzy set theory, time intervals of fuzzy events
are modelled as fuzzy sets, which quantify the truth of whether time points on
the time line are occupied by events. Intervals described by fuzzy sets are called
fuzzy time intervals (FTI) and denoted as Ĩ. For an arbitrary FTI Ĩ, every
time point t on the time line is mapped to Ĩ by a membership function Ĩ(t),
which returns the truth value of whether t is a member of Ĩ. All time points
t that satisfy Ĩ (t) = 1 form the core of Ĩ, denoted as Core(Ĩ), while all time
points satisfy Ĩ (t) > 0 form the support of Ĩ, denoted as Support(Ĩ) (Fig. 2). If
Core(Ĩ) = Support(Ĩ), Ĩ reduces to a CTI. In order to start from the simplest
situation, we assume that an FTI Ĩ must have a non-empty core, and both
Support(Ĩ) and Core(Ĩ) are convex intervals. Intervals in between Support(Ĩ)
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Figure 2. An FTI illustrated by a line chart

and Core(Ĩ) are called fuzzy beginning and fuzzy end (Fig. 2). Unlike relations
between CTIs, relations between FTI and another interval (CTI or FTI) cannot
be decided by a yes or no answer, but only quantified as a truth value between
0 and 1 (Nagypál and Motik, 2003; Ohlbach, 2004; Schockaert and De Cock,
2008; Schockaert et al., 2008).

3. The Triangular Model (TM)

3.1. Representing crisp time intervals (CTI) in TM

In the classical representation, a time interval is represented as a finite linear
segment on a horizontal time line (Fig. 3 top-left). From the paralleled scales
on the time line, one may read the numbers of I− and I+ of the interval. The
vertical dimension is solely used to differentiate multiple overlapping intervals,
if used at all. The linear representation of time intervals is widely used in
our daily life, for example Gantt charts and historical time lines. In different
reasoning systems, whether an interval is open (at one side or both sides) is
defined differently (Vila, 1994). TM does not intend to solve reasoning issues
that concerns this controversy. Whether an interval is open does not affect its
representation in TM. In this paper, we define a crisp interval as close at both
sides and denote it as [I−, I+]. Differently from the classic representation, the
basic concept of the Triangular Model (TM) is the construction of two lines
through the extremes of an interval (Fig. 3 top-right). For each time interval
I, two straight lines (L1 and L2) are constructed, with L1 passing through I−

and L2 passing through I+. α1 is the angle between L1 and the horizontal axis
and α2 is the angle between L2 and the horizontal axis, with α1 = −α2 = α.
The intersection of L1 and L2 is called the interval point. The beginning of
the interval I−, the end of the interval I+ and interval point form an isosceles
triangle. That is why we call this model the Triangular Model (TM). The angle
α is a pre-defined constant which is identical for all interval points, in order to
ensure that each time interval is mapped to a unique 2D point. In this paper,
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we keep consistency with previous research of TM (Kulpa, 1997a; Van de Weghe
et al., 2007) and set α = 45◦. Of course, α can also be altered to other angles
(between 0 and 90 degrees), for specific purposes. In TM, all time intervals are
represented as such interval points in a two-dimensional space (Fig. 3 bottom).
In other words, the position of an interval point completely determines both,
the beginning and the end of the interval. The two-dimensional space of interval
points is called the Interval Space. Because all time intervals can be considered
as subsets of real numbers R, the interval space is denoted as IR (Kulpa, 2006).

I1 [5,8]

I2 [2,5]

I3 [3,8]

I4 [1,9]

I5 [8,8]

0 1 2 3 4 5 6 7 8 9 10

Time axis

Figure 3. Transformation from the linear representation to TM. Top-left: the
classic linear model. Top-right: construction of an interval point. Bottom: time
intervals in TM

3.2. Representing crisp temporal relations in TM

Let the beginning I− and end I+ of two intervals have the following three
possible relations: smaller than (<), equal to (=) and larger than (>). Then,
according to Allen (1983), thirteen possible relationships between two CTIs
can be defined (see Table 1). In TM, every Allen’s relation corresponds to a
specific zone (Kulpa, 1997a,b). Given a study period from 0 to 100, all examined
intervals are located within the isosceles triangle of I[0, 100]. Let us consider a
reference interval I2[33, 66] and several intervals (I1a, I1b, I1c) existing before the
interval I2 (Fig. 4a). In TM, I1a, I1b, I1c are located in the triangular zone in the
left corner of the study area (Fig. 4b). Therefore, it is easy to deduce that all
intervals before I2 must be located in the black zone (Fig. 4c). Namely, this zone
encloses all intervals that are before I2. All Allen’s relations with respect to a
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Table 1. Thirteen Allen’s Relations (Allen, 1983)

I1 equal I2 if I1
- = I2

- ^ I1
+ = I2

+

I1 starts I2 if I1
- = I2

- ^ I1
+< I2

+

I1 started-by I2 if I1
- = I2

- ^ I2
+< I1

+

I1 finishes I2 if I1
+ = I2

+ ^ I1
- > I2

-

I1 finished-by I2 if I1
+ = I2

+ ^ I2
- > I1

-

I1 meets I2 if I1
+ = I2

-

I1 met-by I2 if I2
+ = I1

-

I1 overlaps I2 if I2
- > I1

- ^ I1
+< I2

+ ^ I1
+ > I2

-

I1 overlapped-by I2 if I1
- > I2

- ^ I1
- < I2

+ ^ I2
+ < I1

+

I1 during I2 if I1
- > I2

- ^ I1
+ < I2

+

I1 contains I2 if I2
- > I1

- ^ I2
+ < I1

+

I1 before  I2 if I1
+ < I2

-

I1 after I2 if I2
+ < I1

-

CTI can be represented by such zones in IR (Fig. 5). For each individual figure
in Fig. 5, the reference CTI I has been chosen in the centre of the study period
in order to avoid visual bias. Because all zones in Fig. 5 occupy a unique area
in IR, IR can be divided into thirteen zones with respect to thirteen Allen’s
relations (Fig. 6). We call these zones Crisp Relational Zones (CRZ). Each
CRZ represents the set of CTIs that are in a specific relation with respect to
the reference interval I. Such set of CTIs is denoted as R(I). For example,
the set of CTIs that are before I is denoted as before(I). According to the
number of common extremes (i.e. beginning and end), Allen’s relations can be
categorized into two types. Type 1 intervals have no common extremes (before,
overlaps, during, contains, overlapped-by, after). Type 2 intervals have common
extremes (meets, met-by, starts, started-by, finishes, finished-by and equal). In
TM, Type 1 CRZs have a point-like or linear geometry (zero-dimensional and
one-dimensional); while Type 2 CRZs have a triangle-like or lozenge-like shape
(two-dimensional).

4. Handling rough time intervals (RTI) in TM

4.1. Representing RTIs in TM

Different from the linear model in which an RTI is a linear segment with an
uncertain beginning and an uncertain end (Fig. 7), TM represents RTIs as
geometries in a two-dimensional space. In order to construct an RTI IR in TM,

four lines are projected respectively from I
−

, I−, I+ and I
+
, forming a lozenge

(Fig. 8). This lozenge indicates a zone where the exact CTI I can be found. In
other words, this zone represents the set of CTIs that are possibly equal to I.
Therefore, the zone is called the maybe equal (ME ) zone. Other relational zones
of RTIs will be discussed in detail in the next section. We note that the ME
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]23,10[1aI

]25,20[1bI

]25,6[1cI

]66,33[2I

Figure 4. Temporal relations in the linear model and TM, taking before as an
example

Figure 5. CRZs in individual interval spaces, representing sets of intervals in
Allen relations to the reference interval I

equal

during

contains

before after
meets met-by

starts finishes

finished-by started-by

overlaps overlapped-by

Figure 6. CRZs of an interval in TM
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]9,5[1I }7{1I

]3,0[2I

]7,0[3I ]5,1[3I

]10,0[4I ]8,2[4I

]5,3[5I
5I

]3,2[2I

Figure 7. Rough time intervals in the linear concept. Solid lines denote I, and
dotted lines denote B− and B+ . The combination of the solid line and dotted
lines forms I

I II I

)( I

)(I

Figure 8. The construction of an RTI in TM

Figure 9. Using TM to represent RTIs of Fig. 7
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zone is the only relational zone that contains all the information of IR. Thus,
IR can be represented by its ME zone which covers all possible locations of I.
In this way, IR is represented by a 2D geometry (Fig. 9). Apart from a lozenge,
the 2D geometry can take other shapes. For instance, if I = ∅, the ME zone
becomes a triangle on the horizontal axis (e.g. I5 in Fig. 9) . If either B− = ∅
or B+ = ∅, the ME zone becomes a line (e.g. I2 in Fig. 9). If both B− = ∅ and
B+ = ∅, IR reduces to a CTI and its ME zone becomes a point. In this paper,
we will emphasize RTIs whose ME zone is a lozenge.

4.2. Rough relational zones (RRZ) of RTIs

According to the upper approximation I and the lower approximation I of an
RTI, the interval space (IR) can be divided into zones. The number of zones
depends on whether the lower approximation or boundary regions are empty.
Firstly we focus on RTIs with B+ 6= ∅, B− 6= ∅ and I 6= ∅. With respect to
this kind of RTIs, IR are divided into 15 zones (Fig. 10). We call these zones
Rough Relational Zones (RRZ). Table 2 lists details of the 15 RRZs of Fig. 10.
When comparing CRZs and RRZs, we can see that polygons in CRZs (i.e. zones
of Type 1 relations) remain polygons in RRZs, whereas the point and lines
in CRZs (i.e. zones of Type 2 relations) have expanded to polygons in RRZs.
Two new RRZs are expanded from the beginning and end point of I. Contrary
to CRZs, which express determinate relations, these expanded RRZs express
more than one possible relation. For example, intervals in the Maybe Meets
(MM ) zone have three possible relations to I, i.e. meets, before and overlaps
(Table 2). In RRZs that are not expanded from points and lines, only one

Table 2. Details of RRZs with respect to Fig. 10

Name of RRZ Abbreviation Possible Relations to I Original Name in CRZ 

Before B Before Before 

Overlaps O Overlaps Overlaps 

Contains C Contains Contains 

During D During During 

Overlapped-by OB Overlapped-by Overlapped-by 

After A After After 

Maybe Meets MM Meets, Before, Overlaps Meets 

Maybe Starts MS Overlap, Starts, During Starts 

Maybe Finished-by MFB Overlaps, Finished-by, Contains Finished-by 

Maybe Equal ME Contains, Started-by, Overlapped-by, Finishes,  

During, Starts, Overlaps, Finished-by, Equal 
Equal 

Maybe Started-by MSB Contains, Overlapped-by, Started-by Started-by 

Maybe Finishes MF Overlapped-by, Finishes, During Finishes 

Maybe Met-by MMB Overlapped-by, Met-by, After Met-by 

Rough Beginning RB Before, Meets, Overlaps, Starts, During N/A 

Rough End RE During, Finishes, Overlapped-by, Met-by, After N/A 
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I

I

Figure 10. Rough Relational Zones of an RTI, with B+ 6= ∅, B− 6= ∅ and l
¯
6= ∅

I

I

Figure 11. Rough Relational Zones of an RTI, with B+ = ∅, B− 6= ∅ and l
¯
6= ∅

C

B A

I

MFB MM MSB MMB

ME

Figure 12. Rough Relational Zones of an RTI, with I 6= ∅
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relation is possible. Boundaries between RRZs do not occupy any space, but
belong to the neighbouring RRZs. Arrows in Fig. 10 indicate the belongingness
of boundaries. Moreover, RTIs with an empty lower approximation or an empty
boundary region have different number and structure of RRZs. For example,
RTIs with an empty boundary region (i.e. B− = ∅) have 14 RRZs (Fig. 11).
For this type of RTIs, some RRZs shrink to lines or points, and the RB zone
does not exist any more. RTIs with an empty lower approximation (I = ∅) have
only 6 RRZs (Fig. 12).

4.3. Temporal relations between RTIs

Bassiri (2009) enumerates 68 topological relations between two RTIs (e.g. IR
1 ,

IR
2 ) by 2 × 2 matrixes of relations between I1 and I2, I1 and I2, I1 and I2,

I1 and I2. However, these topological relations between RTIs do not directly
deliver practical meanings. Because RTIs are essentially imprecise descriptions
of CTIs, the useful information comes from temporal relations between the ex-
act CTIs behind RTIs. Therefore, in this section, we investigate how to use
topological relations between RTIs to deduce relations between the exact CTIs.
If two RTIs (e.g. IR

1 , IR
2 ) are represented in the linear model (Fig. 13), the pos-

sible temporal relations between I1 and I2 and cannot be directly captured by
human beings. But by TM, relations between I1 and I2 can be easily decided
by intersecting IR

1 and RRZs of IR
2 . For example, in Fig. 14, when intersect-

ing the lozenge of IR
1 and RRZs of IR

2 , IR
1 ‘touches’ four RRZs of IR

2 , namely,
the maybe meets, rough beginning, overlaps and maybe starts zones. Note that,
within this context, ‘touch’ means that two zones have common parts. By check-
ing Table 2, we obtain the possible relations between I1 and I2 as the union of
possible relations of these four RRZs, i.e. {meets, before, overlaps}

⋃
{meets, be-

fore, overlaps, starts ,during}
⋃

{overlaps, starts, during}
⋃

{overlaps}={meets,
before, overlaps, starts, during}. With this approach, one can easily deduce
possible temporal relations between two RTIs. If IR

2 has a non-empty lower
approximation and non-empty boundary regions (namely B−

2 6= ∅, B+

2 6= ∅ and
I2 6= ∅)), there are 80 topological relations between I1 and RRZs of I2 (Fig.1̃5).
21 different sets of possible relations between I1 and I2 can be inferred from these
80 relations (Table 3). There are 12 more topological relations than Bassiri’s
(2009), because Bassiri missed situations when IR

1 has an empty lower approx-
imation and IR

1 is totally in the boundary region of IR
2 . We marked these

situations with stars in Fig. 15.

4.4. Temporal relations between RTIs and CTIs

If an interval I is described by an upper approximation I and a lower approxima-
tion I, the set of CTIs that are in a specific Allen’s relation to I also will also have
an upper approximation R(I) and a lower approximation R(I). Fig. 16 displays
rough sets counterparts of Allen’s relations in TM. Black zones represent lower
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Table 3. Twenty one different sets of possible relations between I1 and I2 with
respect to Figure 15

Number Possible Relations Number Possible Relations Number Possible Relations 

1 before 8 before, meets, finished-by, 

contains, overlaps 

15 overlapped, finishes, during 

2 overlapped 9 overlaps, finished-by, contains 16 contains, started-by, overlapped-by 

3 contains 10 before, meets, overlaps, starts, 
during 

17 finishes, during, overlapped-by, met-
by, after 

4 during 11 before, meets, overlaps, 

overlapped-by, starts, started-by, 

during, equal, finishes, finished-
by, contains 

18 overlapped-by, met-by, after, 

5 overlapped-by 12 overlaps, starts, during ,finishes, 

equal, overlapped-by, started-by, 
finished-by, contains 

19 during, finishes, overlapped-by, met-

by, after, starts, equal, overlaps, 
started-by, finished-by, contains 

6 after 13 contains, started-by, overlapped-
by 

20 contains, started-by, overlapped-by, 
met-by, after 

7 before, meets, 
overlaps 

14 overlaps, starts, during 21 All 13 Allen’s relations 

 

]10,3[1I ]7,6[1I

]16,5[2I ]13,8[2I

Figure 13. The linear representation of IR
1 and IR

2

R
I1 R

I2 1
R

I
R

I2

Figure 14. Using TM to deduce possible relations between I1 and I2
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Figure 15. All possible topological relations between IR
1 and RRZs of IR

2 (B−
2 6=

∅, B+

2
6= ∅ and I2 6= ∅). The number below each situation corresponds to the

number in Table 3, indicating the set of possible relations between I1 and I2

(* denotes situations that are not included in Bassiri’s relations, Bassiri et al.,
2009).



998 Y. QIANG ET AL.

approximations R(I), while combinations of the black zone and the grey zone

are upper approximations R(I). More exactly, CTIs in the black zone (R(I))
are definitely in the relation R to I, while CTIs in the white zones (¬R(I)) are
definitely not in the relation R to I. In the grey region (R(I)−R(I)), intervals
that may or may not in the relation R to I. Note that for Type 1 relations, both
R(I) and R(I) are non-empty. Whereas for Type 2 relations, R(I) is empty.

Equal(I) Starts(I) Started-by(I) Finishes(I) Finished-by(I)

Meets(I) Met-by(I) Overlaps(I) Overlapped-by(I) During(I)

Contains(I) Before(I) After(I)

Figure 16. Rough sets of intervals in Allen’s relations to I

4.5. Queries about relations between RTIs and CTIs

As discussed in Sections 3.2, the set of CTIs in a certain relation to another
CTI I are modelled as zones in TM, i.e. R(I). These zones can be used to
model constraints of temporal queries of I. By operations on these zones, CTIs
that satisfy these constraints can be obtained. Conjunctive queries can be an-
swered by the intersection operation, e.g. R (I1) ∩ R (I2) ∩ R (I3). For exam-
ple, CTIs during Iv and overlaping Iu, i.e. {I|overlaps(I, Iu) ∧ during(I, Iv)},
can be obtained by intersecting zones of overlaps(Iu) and during(Iv) in TM.
As discussed in Section 4.4, if Iu and Iv are described by RTIs, overlaps(Iu),
during(Iv), will also be rough sets. Fig. 17 illustrates the process of obtaining
the set of CTIs that overlap Iu and during Iv, when Iu and Iv are described
by RTIs. overlaps(Iu) and during(Iv), overlaps(Iu) and during(Iv) are inter-
sected respectively and then both intersections are combined together to form
another rough set < overlaps (Iu)

⋂
during (Iv), overlaps(Iu)

⋂
during(Iv) >.

Similarly, disjunctive queries can be answered by the union operation, e.g.
R (I1) ∪ R (I2) ∪ R (I3). Intervals containing Iw and after Ix are obtained by
the union of contains(Iw) and after (Ix). If Iw and Ix have upper and lower
approximations, the resulting set {I|contains(I, Iw)∨ after(I, Ix)} will also be
a rough set (Fig. 18).
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Figure 17. Querying for the set {I|overlaps(I, Iu) ∧ during(I, Iv)} in TM
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Figure 18. Querying for the set {I|contains(I, Iw) ∧ after(I, Ix)} in TM

5. Handling fuzzy time intervals (FTI) in TM

According to the assumptions of Section 2.2, an FTI consist of a non-empty core
and support, both of which occupy a convex CTI. If the fuzzy beginning and
the fuzzy end are linear and monotonic, the intervals of the core and the sup-
port totally decide the pattern of the FTI. De Tré et al. (2006) modelled such
trapezoidal FTIs in TM as linear segments between the interval point of the
core and the interval point of the support (Fig. 19). The position, inclination
and length of the linear segment totally determine the configuration of an FTI.
This approach shows potential in displaying simple FTIs in historical databases
(Fig. 20). However, it is restricted to cases in which people are solely interested
in the configuration of the core and support, but neglect the functions of the
fuzzy beginning and end, for example, FTIs with fuzzy beginnings and ends de-
fined by the same function. For FTIs defined by diverse membership functions,
then the approach cannot fully describe their differences. At this point, FTIs
with arbitrary functions cannot be adequately modelled within TM. Further
extensions and modifications to TM are still to be elaborated for complex FTIs
and the relations between them, which is left for future work. In this section,
we will solely investigate the relations between FTIs and CTIs. In contrary to
relations between RTIs and CTIs which are represented as discrete geometries,
relations between FTIs and CTIs are modelled as continuous fields in the 2D
space. In this paper, ‘fields’ refer to 2D areas that are described in a continuous
manner. In a field, every possible position is described by a variable or a set
of variables (Longley et al., 2001). With operations on these continuous fields,
queries about CTI-FTI relations can be answered in a more intuitive way.
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Figure 19. Representing a simple FTI as a linear segment in TM (De Tré et al.,
2006)

Number Country Name support ([a, b]) core ([a, b])

1 Belgium Leopold II [1865, 1908] [1865, 1908]

2 Belgium Albert I [1908, 1934] [1908, 1934]

3 France Loubet [1898, 1907] [1899, 1906]

4 France Fallières [1906, 1913] [1907, 1913]

5 Italy Vittorio Emanuele III [1899, 1944] [1900, 1945]

6 Spain Maria Cristina [1885, 1902] [1885, 1902]

7 Spain Alfonso XIII [1902, 1931] [1903, 1930]

8 United Kingdom Victoria [1837, 1901] [1837, 1901]

9 United Kingdom Edward VII [1901, 1910] [1902, 1909]

10 United Kingdom George V [1910, 1935] [1909, 1936]

Figure 20. Representing trapezoidal FTIs in a historical database by use of TM
(De Tré et al., 2006), restricted to the study period between 1900 and 1910

5.1. Relations between CTIs and FTIs

Relations between two CTIs are determined by binary operators (<, = and >)
between their beginnings and ends. However, these operators do not exist for
fuzzy time intervals. Relations between an FTI and another interval (either
CTI or FTI) are expressed by a real number between 0 and 1, which quantifies
the truth of whether the two intervals are in this relation. Different functions
have been proposed to obtain truth values of FTI relations (Nagypál and Motik,
2003; Ohlbach, 2004; Schockaert and De Cock, 2008; Schockaert et al., 2008).
Every function takes special care of a certain aspect of expressivity and reason-
ing ability. All these functions can be represented in TM, yielding continuous
fields with different patterns. In this paper, we adopt Schockaert’s functions
(Schockaert et al., 2008) of FTI relations for its advantages in the reasoning as-
pect (e.g. reflectivity, symmetry and transitivity) which offers a better basis for
further reasoning research. In TM, every point representing a CTI, is allotted
a value between 0 and 1, expressing the graded truth of whether this CTI is in
a certain relation to an FTI. Let R(I1, Ĩ2) denote the truth value of whether

a CTI I1 is in the relation R to a FTI Ĩ2. Let R(Ĩ2) denote the fuzzy set of

CTIs that is in relation R to Ĩ2. In Fig. 21 left, we illustrate some situations for
the during relation between a CTI I1 and an FTI Ĩ2. We refer to Schockaert’s
work (Schockaert and De Cock, 2008; Schockaert et al., 2008) for a detailed

explanation of functions. If the whole part of I1 is within the core of Ĩ2, then
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during(I1, Ĩ2) = 1. If there is a part of I1 that is totally out of the support

of Ĩ2, then during(I1, Ĩ2) = 0. In between these two situations, I1 is partially

during I2, then 0 < during(I1, Ĩ2) < 1. In this way, every I in IR may have a

value of during(I, Ĩ2). The set of CTIs during(Ĩ2) forms a fuzzy set, denoted

as during(Ĩ2), and is modelled as a continuous field in TM (Fig. 21 right).

Analogously, fuzzy sets of other Allen relations with respect to Ĩ2 can also be
represented by continuous fields (Fig. 22). This approach is not restricted to
trapezoidal FTIs as we illustrated. It can also apply to FTIs described by other
functions.
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Figure 21. Representing the fuzzy set during(Ĩ2) in TM
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5.2. Queries about relations between FTIs and CTIs

By use of TM, queries about relations between CTIs and FTIs can be answered.
As discussed in the previous subsection, constraints of relations between CTIs
and an FTI can be modelled by continuous fields in TM. By operations on these
continuous fields, one may obtain the set of CTIs that satisfy these constraints.
The obtained set of CTIs is also a fuzzy set and modelled as a continuous field in
TM. For example, CTIs that contain Ĩ1 constitute a fuzzy set, i.e. contains(Ĩ1),
while CTIs that contain Ĩ2 form another fuzzy set, i.e. contains(Ĩ2). Both
contains(Ĩ1) and contains(Ĩ2) are modelled as continuous fields in TM. The
intersection of contains(Ĩ1) and contains(Ĩ2) yields the fuzzy set of CTIs that
both contain Ĩ1 and Ĩ2, i.e. contains(Ĩ1)

⋂
contains(Ĩ2) (Fig. 23). In TM,

the intersection of fuzzy sets can be obtained by applying fuzzy intersection to
every point in the two-dimensional IR. In Fig. 23, the fuzzy intersection uses
the minimum t-norm (Dubois and Prade, 2000). Of course, this approach is
also compatible to other t-norms. Similarly, unions of fuzzy sets can also be
obtained by operations on the continuous fields. For example, in Fig. 24, the
union of contains(Ĩ1) and contains(Ĩ2) is obtained by the maximum t-conorm
operation (Dubois and Prade, 2000) applied to values in the two continuous
fields of contains(Ĩ1) and contains(Ĩ2).

Figure 23. Querying for CTIs that both contain Ĩ1 and Ĩ2, using the minimum
t-norm

Figure 24. Querying for CTIs that either contain Ĩ1 or Ĩ2, using the maximum
t-conorm
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6. Solving practical problems

Because of the remaining problems and difficulties with FTI modeling in TM,
as described in the previous section, in this section we solely deal with RTIs to
illustrate the usefulness and applicability of TM for the handling of imperfect
time intervals in a two-dimensional space. During World War One, aerial photos
covering the Belgian-German front line in West-Flanders (Belgium) were taken
at discrete time stamps. From these aerial photos, we can observe whether a
military feature (e.g. a fire trench, gun position or barrack) was not yet present,
present, or destroyed. Although the state of a feature is uncertain in between
two time stamps, we assume that it does not change in between two snapshots
which show similar states, such that the uncertainty only remains in between
two snapshots showing different states. Certainly, this assumption relies on our
knowledge that snapshots are dense enough to capture most of features’ changes.
When more volatile entities are considered, an appropriate temporal resolution
will be required. In this context, RTIs are excellently suited to handle time
modelling. Indeed, as no information is available about the state of a feature in
between two time stamps, the construction of adequate membership functions
for FTIs would induce an extra overhead and difficulties in the time modelling
and handling. Together with the unsolved representation difficulties for FTIs in
TM this justifies the choice to focus the case study under consideration on the
use of RTIs.

Indeed, we might consider a period of snapshots showing similar states as
a lower approximation for this state, its neighbouring uncertain intervals as
boundary region, and all of them form the upper approximation (Fig. 25). Thus,
a feature’s lifetime can be meaningfully represented by an RTI. Basically, at least
four photos are required to determine the lifetime of a feature (Fig. 25): (1) the
last photo in which the feature is not yet present, (2) the first photo in which
the feature is present, (3) the last photo in which the feature is present, and
(4) the first photo in which the feature is destroyed or abandoned. The interval
between the dates of photo (2) and (3) is the lower approximation of the feature’s
lifetime, while interval between the dates of photo (1) and photo (4) is the upper
approximation. Intervals between the dates of photo (1) and (2), and intervals

Figure 25. The RTI of a military feature
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between the dates of photo (3) and (4) are boundary regions, which indicate
respectively the range of the feature’s construction and destroy dates. There are
a few exceptions, where a feature was not yet present in one photo and already
destroyed in the following photo. Since photo (2) and (3) are missing, the RTI
for these features has an empty lower approximation. As described in Section
4.2, such RTIs are represented as triangles on the horizontal axis. The dates
of the photos have been obtained from the database of the military features
in which they were originally stored. From the database, people cannot easily
capture distributions of features’ RTIs. However, TM can display these RTIs in
a more visible way.

Fig. 26 displays RTIs of a type of fire trenches (i.e. FT1) in TM. We assign
darker colours to areas that have more overlapped polygons. From this figure
we can see that most of FT1s are present in the beginning of the war, because
there is a dark zone distributed at the left corner of the study area. Some other
FT1s were randomly distributed through the war. However, in the very right
corner of the study area, we can see a small group of FT1s that were specifically
present at the end of the war. Compared with the data stored in a database,
TM provides a more direct visualisation of the distribution of RTIs.
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Figure 26. RTIs of FT1 features in TM

Moreover, TM may be combined with traditional geographical maps in or-
der to support exploratory spatiotemporal analysis. In Fig. 27, RTIs of bar-
racks’ lifetimes are displayed in TM where we can see barracks are temporally
distributed in two clusters. The construction dates of barracks in these two
clusters overlap in most of the cases, whereas their destroy dates are clearly
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Figure 27. RTIs of barracks in TM

distributed in two distinctive periods. Barracks in the first cluster are mostly
destroyed in 1916, while barracks in the second cluster are mostly destroyed in
the second half of 1917. When checking the geographical distribution of these
barracks (Fig. 28), one may observe that most barracks of the second cluster
are further away from the front line than barracks of the first cluster. From this
observation, people may infer that barracks near the front line were destroyed
earlier than barracks further away from the front line. According to records of
the war, fighting along the front line was getting increasingly intensive during
the period of the two clusters. This fact can probably explains our finding in
TM: barracks near the front line were destroyed or abandoned due to intensive
fighting; while barracks further away from the front line survived for a longer
time. In general, TM offers people a preliminary perception of the distribution
of RTIs, which can not be easily done by traditional representations. This per-
ception can guide people to set up specific hypothesis to be tested by selected
methods.

7. Conclusions and future work

In this paper, we have discussed two types of imperfect time intervals (rough
time intervals and fuzzy time intervals), and investigated them in the Trian-
gular Model. In TM, RTIs can be represented by discrete geometries in a
two-dimensional space. According to shapes and locations of these geometries,
one can easily read information of an RTI. Compared with the linear represen-



1006 Y. QIANG ET AL.

Figure 28. Geographical locations of the two barrack clusters
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tation, TM is particularly advantageous in displaying large amounts of RTIs
which broadly exist in temporal databases and data warehouses. Furthermore,
TM can be treated as a visualisation tool that displays temporal information
of geographical objects (see Section 6). By exploring geographical maps in
combination with TM visualisations, people may perceive patterns or trends in
spatiotemporal data sets, and then set hypotheses to be tested by additional
analytical techniques, which is the major task of exploratory data analysis (An-
drienko and Andrienko, 2006). On the other hand, temporal relations of RTIs
can be investigated in TM. The set of CTIs that are in a specific relation to an
RTI is represented by a 2D rough set in TM. Operations on such rough sets can
be carried out by operations on corresponding geometries (Section 4.5). More-
over, by topological relations between an RTI and RRZs of the other RTI, one
may easily deduce the possible relations between the two RTIs.

In TM, trapezoidal FTIs are represented as linear segments between interval
points of the core and support (De Tré et al., 2006). This approach expresses
temporal locations of the core and support and may offer an initial display of
simple FTIs in temporal database. However, we still have to work out how to
model more complex FTIs and relations between complex FTIs in TM. Possibly,
more dimensions and diagrammatic elements have to be added to TM. We leave
this for future work and in this paper limit our discussion on the handling of
FTIs to relations between CTIs and FTIs. In TM, CTIs that are in a specific
relation to FTI form a fuzzy set which is modelled as a continuous field in TM.
By operations on these continuous fields, queries concerning CTIs and FTIs can
be answered in an intuitive way.

TM provides an alternative representation of temporal information, where
people can investigate imperfect time intervals or relations of imperfect time
intervals from a different perspective. Compared to traditional linear model, the
TM offers compact visualisations of imperfect time intervals. The representation
of every time interval is fixed and unique, offering the possibility of displaying the
distribution of large numbers of intervals. Moreover, sets (crisp, rough or fuzzy)
of intervals can be graphically represented in TM, which is more perceptible
compared to mathematical expressions. Objectively speaking, TM does not
create a new nor extend an existing temporal calculus or logic, however, it takes
special care of intuitive and visualisation aspects. As humans are better at
reading and processing graphic representations than numerical representations,
TM can be considered a valuable assistant tool for analysing and reasoning
about imperfect time intervals.

In future research will take account of both theoretical and application as-
pects. The former issues include the continued work on the representation of
complex FITs in TM (or extensions thereof). As well, the representation of
FTI-FTI and FTI-RTI relations in TM will be addressed. Furthermore, we
will investigate whether TM can express temporal semantics based on possibil-
ity theory and probability theory. Regarding the application issues, we plan
to elaborate more use cases in order to evaluate TM within different contexts.
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Also, we will implement TM as a software application with an interactive inter-
face for people to handle temporal information in general and imperfect time
intervals in particular. This interactive graphical tool may be a useful add-on for
temporal database systems or information systems. The tool may assist users
in analysing distributions of time intervals, or in defining and answering flexible
queries by manipulating the 2D features within the TM space. For example, TM
can be incorporated with a geographical information system in order to display
temporal information of geographical objects. By interactively linking the TM
view and the map view, people can flexibly analyze geographical objects from
both spatial and temporal aspects.
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