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1. Introduction

Electrical Impedance Tomography (EIT) is a non-destructive imaging technique
which has various applications in medical imaging, geophysics and other fields.
Its purpose is to reconstruct the electric conductivity and permittivity of hidden
objects inside a medium with the help of boundary field measurements. If we
denote by Ω the background medium with Σ being its smooth boundary where
the currents are applied, then the commonly used continuum model is

−div(q(x, ω)∇u(x, ω)) = 0 in Ω,

q(x, ω)∂nu(x, ω) = f(x, ω) on Σ.

Here u is the electric potential or voltage, and the admittivity q is given by
q(x, ω) = σ(x, ω)+iωε(x, ω), where σ is the electric conductivity, ε is the electric
permittivity, and ω is the angular frequency of the applied current. We also need
the conservation of charge condition

∫

Σ
f = 0 and the condition

∫

Σ
u = 0 which
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amounts to choosing a "ground" or reference voltage. For further extensions of
this continuum model in case of real experiments, we refer to the survey papers
of Borcea (2002) and Cheney, Isaacson and Newell (1999).

A widely used solution approach to this inverse problem of identifying q is
to minimize the L2-distance between the potentials ui pertinent to a certain
given number M of applied currents fi and corresponding measurements mi.
Since the problem is known to be severely ill-posed, it is necessary to add a
regularization term in the functional. The resulting minimization problem then
becomes

min
q

M
∑

i=1

∫

Ω

(ui(q) − mi)
2 + β

∫

Ω

|∇q| (1)

where the first term takes care of matching the given measurements and the
second term implements the regularization with a positive regularization pa-
rameter β. The nondifferentiable nature of this term is well-known to preserve
discontinuities, i.e., the interfaces between the background and the inclusions
(Chung, Chan and Tai, 2005).

A number of algorithms have been proposed for solving particular situations
containing additional information on the data or the underlying configuration.
For instance, in Ammari, Moskow and Vogelius (2003), Brühl, Hanke and Vo-
gelius (2003), and Cedio-Fengya, Moskow and Vogelius (1998) it is assumed that
the background medium is smooth (with known conductivity) and that it con-
tains a certain number of small inclusions with a higher or lower conductivity.
In these papers, the hypothesis of small inhomogeneities allows to perform an
asymptotic analysis of the model, which can be used to design different spe-
cialized reconstruction algorithms. A similar asymptotic analysis is used in the
present paper to produce the so-called topological derivative, which provides
information about the location of objects with conductivities different from the
background. Another possible hypothesis (or additional a priori information) is
to assume that the conductivity q is piecewise constant. In this case, the objects
are assumed to have sharp interfaces. Such an assumption allows us to pursue
a shape optimization approach, since the regions where the conductivity q is
constant define subdomains of the domain Ω; see Chung, Chan and Tai (2005)
for a related concept using level set functions for representing the inclusions.

In the present paper we pick up the aforementioned perspective of q being
piecewise constant. Therefore we can use the tools of shape and topology op-
timization as described, e.g., in Sokołowski and Zolésio (1992), Sokołowski and
Żochowski (1999). First we introduce the topological derivative (Sokołowski
and Zolésio, 1999) for the EIT-problem. We then use this information in an
iterative algorithm for initializing the regions with different conductivities. Sub-
sequently, we employ shape sensitiviy for minimizing a least-squares functional
on the boundary.

The rest of the paper is organized as follows: In the next section we formulate
the problem under consideration, and in Section 3 we introduce the topological
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derivative (Sokołowski and Zolésio, 1999) for the EIT problem. The following
section is devoted to computing the shape derivative and the derivative with
respect to q of the underlying reduced objective functional. Finally, in the last
section, we describe the algorithm and provide a few numerical results.

2. The EIT problem

Let Ω be a bounded domain in R
N , N ≥ 2, with smooth boundary Σ. We

assume that Ω contains material with electrical conductivity q(x) ≥ q0 > 0.
Then the electrical potential u(x) satisfies

−div(q∇u) = 0 in Ω, (2)

q∂nu = f on Σ, (3)

where f is an applied current density on Σ satisfying the conservation of charge
∫

Σ
f(s) ds = 0. The EIT problem consists in finding the electrical conductivity

q(x) inside Ω using a set of given values of applied current densities fi(x),
i = 1, . . . , M , on Σ and the corresponding electrical potentials ui(x) on Σ.

Here we assume that the conductivity is piecewise constant and that it takes
two distinct values, q1 and q2. Then, Ω can be split into two disjoint domains
Ω1 and Ω2, with Ω = Ω1 ∪Ω2 and conductivities q1 and q2, respectively, so that
Σ ∩ Γ = ∅ with Γ = ∂Ω1 (see Fig. 1). We then have q = q11Ω1

+ q21Ω2
. Due to

the particular form of q the regularization term becomes
∫

Ω

|∇q| = |q2 − q1|P(Γ), (4)

where P(Γ) stands for the perimeter of Ω1. Therefore, the problem is reduced
to solving the following problem which depends only on Ω2 and the scalar values
q1, q2:

minimize J (Ω2, q1, q2) =

M
∑

i=1

∫

Σ

(ui − mi)
2 + β|q2 − q1|P(Γ), (5)

where ui is the solution of

−div(q∇ui) = 0 in Ω, (6)

q∂nui = fi on Σ, (7)

with fi a known boundary current density for i ∈ {1, .., M}. Further, mi is the
boundary measurement corresponding to fi. In order to fulfill the compatibility
conditions required for the Neumann boundary condition (7), the measurements
must satisfy

∫

Σ

mi = 0, i = 1, .., M. (8)
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Figure 1. Domain Ω = Ω1 ∪ Ω2.

Since the solution of the Neumann problem (6)-(7) is not uniquely defined, we
impose the condition

∫

Σ

ui = 0, i = 1, .., M, (9)

in order to obtain uniqueness. We also introduce the functional

J(Ω2) =
M
∑

i=1

∫

Σ

(ui − mi)
2 + β|q2 − q1|P(Γ), (10)

where q1, q2 are now assumed to be fixed. Referring back to (5) we clearly see
that it contains Ω2 as an unknown quantity. Hence, (5) represents a shape
optimization problem.

Our subsequent algorithm for solving (5) operates in two steps. First, for
fixed q1, q2, we minimize J with respect to Ω2, i.e., we minimize J . Then,
based on the new domain Ω2, we update q1, q2. This cycle is repeated until
convergence. In order to accomplish this, in the next two sections we study
the minimization of J first without the regularization term in the context of
topological sensitivity in Section 3 and then including regularization using tools
of shape sensitivity analysis in Section 4. Topological sensitivity is intended
to detect the number and positions of the inclusions. Shape sensitivity then
"optimizes" the shape of the inclusions.

3. Topological derivative

Now we assume that the domain Ω1 is a small ball of radius ε and center
x̂ = (x̂1, x̂2) ∈ Ω, and we write Ωε

1 instead of Ω1. This allows to perform an
asymptotic expansion of the shape functional J(Ωε

2) with respect to ε. Here we
use Ωε

2 := Ω \ Ωε
1. Eventually, this provides the topological derivative of J . In

what follows, we assume, for the sake of simplicity, that x̂ = (0, 0). We also
introduce Γε := ∂Ωε

1. In this simplified framework, we are able to prove that
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the solution ui can be written as ui = uε
1,i1Ωε

1
+ uε

2,i1Ωε
2
, with (uε

1,i, u
ε
2,i) the

solution of the coupled system

−∆uε
2,i = 0 in Ωε

2, (11)

q2∂n2
uε

2,i = fi on Σ, (12)

−∆uε
1,i = 0 in Ωε

1, (13)

uε
1,i = uε

2,i in Γε, (14)

q2∂n1
uε

2,i = q1∂n1
uε

1,i on Γε. (15)

Here n1 and n2 stand for the outer unit normal vector to Ωε
1 and Ωε

2, respectively.
Thus, on Γε, we have n1 = −n2. The normal derivatives with respect to n1 and
n2 are ∂n1

= ∇x · n1 and ∂n2
= ∇x · n2.

In what follows, for the sake of simplicity, we will drop the subscript i. This
corresponds to only one measurement, i.e., M = 1. We point out that the case
of several measurements is readily deduced from the case M = 1.

For the asymptotic expansion, we consider the following problems associated
with (11)-(15):

−∆uε
2 = 0 in Ωε

2, (16)

q2∂n2
uε

2 = f on Σ, (17)

q2∂n1
uε

2 = q1∂n1
uε

1 on Γε, (18)

and

−∆uε
1 = 0 in Ωε

1, (19)

uε
1 = uε

2 in Γε. (20)

Problem (16)-(18) is a Neumann problem. Since
∫

Σ
f = 0 and

∫

Γε

∂n1
q1u

ε
1 =

∫

Ωε
1

∆uε
1 = 0,

the Neumann problem is compatible. As the solution of (16)-(18) is defined
only up to a constant, we impose

∫

Σ

uε
2 = 0 (21)

to get uniqueness. We will see that condition (21) has an important contribution
in the asymptotic expansion.

3.1. First approximation

The first step of the asymptotic expansion is to approximate uε
2 by u2, the

solution of (16)-(18) for ε = 0:

−∆u2 = 0 in Ω2, (22)

q2∂n2
u2 = f on Σ. (23)
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The compatibility condition for (22)-(23) is satisfied, and the uniqueness of the
solution is given by (9). Thus, we introduce the rest R1

2,ε := uε
2 − u2 such that

uε
2 = u2 + R1

2,ε. (24)

Then, assuming (local) regularity for the solution u2 we write the following
expansion of u2 for x ∈ Γε:

u2(x) = u2(0) + ∇u2(0) · x +
1

2
D2u2(0)x · x + S1

2,ε(x) (25)

with remainder S1
2,ε(x). Now we are looking for an expansion of uε

1 of the form

uε
1 = v0 + v1 + v2 + S1

1,ε + R1
1,ε. (26)

Plugging (24) and (25) into the Dirichlet conditions (20) we get

v0(x) = u2(0), (27)

v1(x) = ∇u2(0) · x, (28)

v2(x) =
1

2
D2u2(0)x · x, (29)

where D2u2 denotes the Hessian of u2. The quantities S1
1,ε and R1

1,ε solve

−∆S1
1,ε = 0 in Ωε

1, (30)

S1
1,ε = S1

2,ε in Γε, (31)

and

−∆R1
1,ε = 0 in Ωε

1, (32)

R1
1,ε = R1

2,ε in Γε. (33)

3.2. Second approximation

Now we are looking for an expansion of the term R1
2,ε = uε

2−u2. In what follows,
we introduce several Neumann problems to approximate uε

2. The solutions of
these Neumann problems are unique up to a constant. However, we do not fix
the constant immediately, but rather in the last step when we gather all the
approximations. First of all we must introduce the Steklov-Poincaré operator
or Dirichlet-to-Neumann operator TΓε

. Let z ∈ H1(Ωε
2). Then TΓε

is defined as
TΓε

: H
1

2 (Γε) → H− 1

2 (Γε), z|Γε
7→ (∂n1

ẑ)|Γε
, where ẑ is the solution of

−∆ẑ = 0 in Ωε
1, (34)

ẑ = z on Γε. (35)
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Subtracting (16)-(18) and (22)-(23), we obtain the following equation for R1
2,ε:

−∆R1
2,ε = 0 in Ωε

2, (36)

q2∂n2
R1

2,ε = 0 on Σ, (37)

q2∂n1
R1

2,ε = q1∂n1
uε

1 − q2∂n1
u2 on Γε. (38)

Using (26) in (38) and taking into account that (∂n1
R1

1,ε)|Γε
= TΓε

(R1
2,ε|Γε

),

which comes from (32)-(33) and the definition of TΓε
, we get

q2∂n1
R1

2,ε − q1TΓε
(R1

2,ε) = q1∂n1
(v0 + v1 + v2 + S1

1,ε) − q2∂n1
u2 on Γε.

(39)

Note that any constant solves the homogeneous problem associated with (36)-
(37) and (39). Indeed, if λ is a given constant and λ̂ is the solution of (34)-
(35) with λ on the right-hand side, it is easy to see that λ̂ = λ and, thus,
TΓε

(λ) = ∂n1
λ̂ = 0. Therefore, the solution of (36)-(37) and (39) is unique

up to a constant as usual for Neumann problems. Hence, we are looking for a
solution R1

2,ε of the form

R1
2,ε = w0 + w1 + w2 + R2

2,ε. (40)

Since v0 is constant, we choose w0 ≡ 0. We also have the following expansion
for ∂n1

u2:

∂n1
u2(x) = ∇u2(0) · n1 + D2u2(0)x · n1 + S2

2,ε(x). (41)

Therefore, we define w1, w2 and R2
2,ε such that the conditions (36)-(37) and

q2∂n1
w1 − q1TΓε

(w1) = (q1 − q2)∂n1
u2(0) on Γε, (42)

q2∂n1
w2 − q1TΓε

(w2) = ε(q1 − q2)
[

D2u2(0)n1 · n1

]

on Γε, (43)

q2∂n1
R2

2,ε − q1TΓε
(R2

2,ε) = q1S
1
1,ε − q2S

2
2,ε on Γε (44)

hold true.

3.3. Approximation of w1

In order to have an approximation of w1, we use the change of variable x =: εξ

and define w̃1(ξ) as the solution of
−∆ξw̃1 = 0 in R

N \ B(0, 1), (45)

q2∂n1
w̃1 − q1TΓε

(w̃1) = (q1 − q2)∂n1
u2(0) on ∂B(0, 1). (46)

Note that in (46) ∂n1
denotes the operator ∇x · n1, which is easily related to

the gradient with respect to ξ by ε∇x = ∇ξ. For convenience, in what follows
we use

α :=
q1 − q2
q1

N−1 + q2
and r = |x| = ε|ξ|. (47)

We have the following proposition.
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Proposition 1 The solution w̃1(ξ) to (45)- (46) is given by

w̃1(ξ) = −
εα

N − 1
∇u2(0) ·

ξ

|ξ|N
. (48)

We further have lim|ξ|→∞ w̃1(ξ) = 0.

Proof. First of all w̃1(ξ) given by (48) is harmonic, since it can be checked easily
that

∆ξ

ξi

|ξ|N
= 0, i = 1, .., N.

Therefore, (45) is fulfilled. Now we check the boundary condition (46):

q2 · ∂n1
w̃1(ξ)|ξ∈∂B(0,1) = q2 · ∂r

(

−
εNα

N − 1

1

rN−1
∇u2(0) · n1

)

|r=ε

= q2 ·

(

εNα

rN
∇u2(0) · n1

)

|r=ε

= αq2∂n1
u2(0).

The solution ŵ1 of (34)-(35) with w̃1 on the right-hand side is given by

ŵ1 = −
αε

N − 1
∇u2(0)n1

r

ε
,

and, thus,

q1 · TΓε
(w̃1) = q1 · ∂n1

ŵ1|Γε
= −

αq1

N − 1
∂n1

u2(0).

Finally we get

(q2 · ∂n1
w̃1(ξ) − q1 · TΓε

(w̃1(ξ))) |ξ∈∂B(0,1) = (q1 − q2)∂n1
u2(0).

Thus we have proved that the boundary condition (46) is fulfilled.

The approximation w̃1 does not satisfy the boundary condition (37). Thus,
it leaves a discrepancy on Σ which will be compensated with the help of the
function z1 defined in the following way:

−∆z1 = 0 in Ω2, (49)

∂n2
z1 =

εNα

N − 1
∂n2

(

∇u2(0) ·
x

|x|N

)

on Σ. (50)

It can be checked for the Neumann problem (49)-(50) that the compatibility
condition is fulfilled. Therefore, we have obtained the expansion

w1 = w̃1 + z1 + W1, (51)

where W1 is defined as W1 = w1 − w̃1 − z1.
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3.4. Approximation of w2

We are now looking for a similar expansion of w2. Using the change of variable
x = εξ we introduce w̃2(ξ) as the solution of

−∆ξw̃2 = 0 in R
N \ B(0, 1), (52)

q2∂n1
w̃2 − q1TΓε

(w̃2) = ε(q1 − q2)
[

D2u2(0)n1 · n1

]

on ∂B(0, 1). (53)

For convenience, in what follows we use

β :=
q1 − q2
2q1

N
+ q2

. (54)

Similarly as for w̃1(ξ), we find that a solution w̃2(ξ) to (52)- (53) is given by

w̃2(ξ) = −
ε2β

N

[

D2u2(0)ξ · ξ

|ξ|N+2

]

(55)

which tends to 0 as |ξ| → ∞. We introduce the function z2 which compensates
for the discrepancy left by w̃2 on Σ:

−∆z2 = 0 in Ω2, (56)

∂n2
z2 =

εN+2β

N
∂n2

[

D2u2(0)x · x

|x|N+2

]

on Σ. (57)

It can be checked for the Neumann problem (56)-(57) that the compatibility
condition is fulfilled. Therefore we have obtained the expansion

w2 = w̃2 + z2 + W2, (58)

where W2 is defined as W2 = w2 − w̃2 − z2.

3.5. Uniqueness of uε
2

As mentioned earlier, the solutions of (45)-(46), (49)-(50) and (52)-(53), (56)-
(57) are not unique. Hence, we must choose a normalisation in order to get
uniqueness. For z1 and z2 we take

∫

Σ
z1 = 0 and

∫

Σ
z2 = 0. Then we introduce

a constant λε and gather (24), (40), (51) and (58) so that we obtain the following
expansion for uε

2:

uε
2(x) = u2(x) + w̃1(ξ) + z1(x) + w̃2(ξ) + z2(x) + λε

+ W1(x) + W2(x) + R2
2,ε. (59)

The constant λε must be determined by the normalization condition (21) to
guarantee uniqueness of the solution. In view of (59), this condition implies

∫

Σ

u2(x) + w̃1(ξ) + z1(x) + w̃2(ξ) + z2(x) + λε + W1(x) + W2(x) +R2
2,ε = 0.
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Due to
∫

Σ
u2 = 0 we have

λε = −|Σ|−1

∫

Σ

w̃1(ξ) + w̃2(ξ) + W1(x) + W2(x) + R2
2,ε.

For numerical purposes, we split λε into λε = λ1,ε + λ2,ε with

λ1,ε = −|Σ|−1

∫

Σ

w̃1(ξ) + w̃2(ξ),

λ2,ε = −|Σ|−1

∫

Σ

W1(x) + W2(x) + R2
2,ε.

Then the main approximation in our numerical approach is

uε
2(x) ⋍ u2(x) + w̃1(ξ) + z1(x) + w̃2(ξ) + z2(x) + λ1,ε. (60)

3.6. Expansion of the shape functional J(Ω2)

As noted before, we consider here the case of a single measurement, i.e. M = 1,
and we drop the subscript i in all notation. In addition, we assume that β = 0
in order to neglect the perimeter term which is problematic for topological
sensitivity. Rather we capture this by shape sensitivity later. It is necessary to
invoke the latter assumption for the expansion of the functional to be of order
ε2. Hence, the shape functional J evaluated at Ωε

2 is equal to

J(Ωε
2) =

∫

Σ

(uε
2 − m)2. (61)

Using (59) in (61) we get

J(Ωε
2) = J(Ω) + Kw̃1

+ Kw̃2
+ Kz1

+ Kz2
+ Kλ1,ε

+ L0 + L1 + L2,

where Kφ denotes the integral Kφ =
∫

Σ
2φ(x)(u2(x) − m(x)) dx and

L0 =

∫

Σ

(w̃1(ξ) + z1(x) + w̃2(ξ) + z2(x) + λ1,ε)
2 dx,

L1 =

∫

Σ

2(λ2,ε + W1(x) + W2(x) + R2
2,ε(x))

· (u2 − m + w̃1(ξ) + z1(x) + w̃2(ξ) + z2(x) + λ1,ε) dx,

L2 =

∫

Σ

(λ2,ε + W1(x) + W2(x) + R2
2,ε(x))2 dx.

Now we analyse each term separately. We start by noting that in view of (8)-(9)
we have Kλ1,ε

= 0. Next we introduce the adjoint state p as solution of

−∆p = 0 in Ω, (62)

∂n2
p = 2(u2 − m) on Σ. (63)

Note that the compatibility condition for p is obviously satisfied.
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3.6.1. Calculation of Kw̃1
+ Kz1

and Kw̃2
+ Kz2

Using Green’s formula, we find
∫

Ωε
2

−∆p(x) w̃1(ξ) + p(x)∆w̃1(ξ) dx =

∫

Σ∪Γε

−∂n2
p(x) w̃1(ξ) + p(x) ∂n2

w̃1(ξ) dx

= 0

and, thus, we get

Kw̃1
=

∫

Σ

∂n2
p(x) w̃1(ξ) dx

= −

∫

Γε

∂n2
p(x) w̃1(ξ) dx +

∫

Γε

p(x) ∂n2
w̃1(ξ) dx +

∫

Σ

p(x) ∂n2
w̃1(ξ) dx.

Now we compute ∂n2
w̃1(ξ)|Γε

. Note that according to (48) and x = εξ we have

w̃1(ξ) = −
εNα

N − 1
∇u2(0) ·

x

|x|N
.

Using ∇x(xi|x|−N ) = −Nxi|x|−N−2x + |x|−N∇xxi, we get

∂n2
w̃1(ξ) = −

εNα

N − 1
∇x

(

N
∑

i=1

∂iu2(0)xi|x|
−N

)

· n2

= −
εNα

N − 1

(

−N |x|−N−2(x · ∇xu2(0))x + |x|−N∇xu2(0)
)

· n2.

Since x = −εn2 on Γε, we obtain

∂n2
w̃1(ξ)|Γε

= −
εNα

N − 1

(

−ε−NN∇xu2(0) · n2 + ε−N∇xu2(0) · n2

)

= α∇xu2(0) · n2

= −ε−1α∇xu2(0) · x.

Further we expand p about x = 0:
∫

Γε

p(x) ∂n2
w̃1(ξ) dx =

∫

Γε

[

p(0) + ∇p(0) · x + O(ε2)
]

·
[

−αε−1∇u2(0) · x
]

dx.

Due to the symmetry of the sphere Γε, we have
∫

Γε
p(0)∇u2(0) · x = 0 and

∫

Γε

x2
j dx = N−1

N
∑

i=1

∫

Γε

x2
i dx ∀j ∈ {1, .., N} .
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Finally, combining our previous results we get

∫

Γε

−αε−1∇p(0) · x∇u2(0) · xdx = −αε−1
N
∑

i=1

∂ip(0)∂iu2(0)N−1ε2|SN−1
ε |

= −ε|SN−1
ε |αN−1∇p(0) · ∇u2(0).

The computation of the integral thus gives

∫

Γε

p(x) ∂n2
w̃1(ξ) dx = −ε|SN−1

ε |αN−1∇p(0) · ∇u2(0) + o(ε|SN−1
ε |).

Note that we have |SN−1
ε | = 2πε for N = 2 and |SN−1

ε | = 4πε2 for N = 3. By
a similar calculation we obtain

∫

Γε

∂n2
p(x) w̃1(ξ) dx = ε|SN−1

ε |αN−1∇p(0) · ∇u2(0) + o(ε|SN−1
ε |).

For z1, we conclude

Kz1
=

∫

Σ

∂n2
p(x) z1(x) dx

= −

∫

Γε

∂n2
p(x) z1(x) dx +

∫

Γε

p(x) ∂n2
z1(x) dx +

∫

Σ

p(x) ∂n2
z1(x) dx.

The definition (49)-(50) of z1 yields ∂n2
z1(x) = −∂n2

w̃1(ξ) on Σ, and, thus,

∫

Σ

p(x) ∂n2
z1(x) dx +

∫

Σ

p(x) ∂n2
w̃1(ξ) dx = 0. (64)

Then we obtain

Kw̃1
+ Kz1

= −2ε|SN−1
ε |αN−1∇p(0) · ∇u2(0) + o(ε|SN−1

ε |)

−

∫

Γε

∂n2
p(x) z1(x) dx +

∫

Γε

p(x) ∂n2
z1(x) dx. (65)

A similar calculation yields

Kw̃2
+ Kz2

= −

∫

Γε

∂n2
p(x) z2(x) dx +

∫

Γε

p(x) ∂n2
z2(x) dx

+ o(ε|SN−1
ε |). (66)



Electrical impedance tomography: from topology to shape 925

3.6.2. Calculation of L0

We split L0 into L0 = L
(1)
0 + L

(2)
0 + L

(3)
0 with

L
(1)
0 =

∫

Σ

(w̃1(ξ) + w̃2(ξ) + λ1,ε)
2,

L
(2)
0 =

∫

Σ

(z1(x) + z2(x))2,

L
(3)
0 =

∫

Σ

2(w̃1(ξ) + w̃2(ξ) + λ1,ε)(z1(x) + z2(x)).

For L
(1)
0 we get

L
(1)
0 =

∫

Σ

w̃1(ξ)
2 + w̃2(ξ)

2 + λ2
1,ε + 2(w̃1(ξ)w̃2(ξ)) + 2(w̃1(ξ) + w̃2(ξ))λ1,ε

= −|Σ|λ2
1,ε +

∫

Σ

w̃1(ξ)
2 +

∫

Σ

w̃2(ξ)
2 + 2

∫

Σ

w̃1(ξ)w̃2(ξ).

Further, we obtain with x = (x1, x2, ..., xN ) and according to (48)

∫

Σ

w̃1(ξ)
2 = ε2N α2

(N − 1)2

N
∑

i,j=1

∂iu2(0)∂ju2(0)I
(1)
i,j ,

∫

Σ

w̃2(ξ)
2 =

ε2(N+2)β2

(N)2

N
∑

i,j,k,l=1

∂2
iju2(0)∂2

k,lu2(0)I
(2)
i,j,k,l,

∫

Σ

w̃1(ξ)w̃2(ξ) =
ε2N+2αβ

(N − 1)N

N
∑

i,j,k=1

∂ku2(0)∂2
iju2(0)I

(12)
i,j,k

with

I
(1)
i,j =

∫

Σ

xixj

|x|2N
, I

(2)
i,j,k,l =

∫

Σ

xixjxkxl

|x|2(N+2)
, I

(12)
i,j,k =

∫

Σ

xixjxk

|x|2N+2
. (67)

For λ1,ε we compute

λ2
1,ε = |Σ|−2

[
∫

Σ

w̃1(ξ) + w̃2(ξ)

]2

= |Σ|−2





εNα

N − 1

N
∑

k=1

∂ku2(0)I
(λ,1)
k +

εN+2β

N

N
∑

i,j=1

∂2
i,ju2(0)I

(λ,2)
i,j





2

with

I
(λ,1)
k =

∫

Σ

xk

|x|N
, I

(λ,2)
i,j =

∫

Σ

xixj

|x|N+2
. (68)
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3.6.3. Expansion of the functional

In order to underline the dependence on x̂ of the different quantities, in this
section, we do no longer assume that x̂ = (0, 0) as it was the case in our previous
calculations. Gathering the previous results, we obtain the following expansion
for the functional J(Ωε

2):

J(Ωε
2) = J(Ω) +

4
∑

k=0

Tk,ε(x̂) + o(ε|SN−1
ε |) + Z + Y,

with

T0,ε(x̂) = −2ε|SN−1
ε |αN−1∇p(x̂)∇u2(x̂),

T1,ε(x̂) =
ε2Nα2

(N − 1)2

N
∑

i,j=1

∂iu2(x̂)∂ju2(x̂)I
(1)
i,j ,

T2,ε(x̂) =
ε2(N+2)β2

(N)2

N
∑

i,j,k,l=1

∂2
iju2(x̂)∂2

k,lu2(x̂)I
(2)
i,j,k,l,

T3,ε(x̂) =
2ε2N+2αβ

(N − 1)N

N
∑

i,j,k=1

∂ku2(x̂)∂2
iju2(x̂)I

(12)
i,j,k,

T4,ε(x̂) = −|Σ|−1





εNα

N − 1

N
∑

k=1

∂ku2(x̂)I
(λ,1)
k +

εN+2β

N

N
∑

i,j=1

∂2
i,ju2(x̂)I

(λ,2)
i,j





2

,

where I
(1)
i,j , I

(2)
i,j,k,l, I

(12)
i,j,k and I

(λ,2)
i,j are defined in (67) and (68). We also define

Y = L1 + L2, (69)

and

Z = −

∫

Γε

∂n2
p(x) z1(x) dx +

∫

Γε

p(x) ∂n2
z1(x) dx

−

∫

Γε

∂n2
p(x) z2(x) dx +

∫

Γε

p(x) ∂n2
z2(x) dx + L

(2)
0 + L

(3)
0 .

4. Shape derivative

Consider the problems (16)-(18) and (19)-(20) in the domains Ω1 and Ω2, i.e.,

−∆u2 = 0 in Ω2, (70)

q2∂n2
u2 = f on Σ, (71)

q2∂n1
u2 = q1∂n1

u1 on Γ (72)
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and

−∆u1 = 0 in Ω1, (73)

u1 = u2 in Γ. (74)

Let V : RN → R
N be a given smooth vector field with compact support in R

N

According to Sokołowski and Zolésio (1992), the shape derivatives u′
1 and u′

2 of
u1 and u2, respectively, solve the following systems

−∆u′
2 = 0 in Ω2, (75)

q2∂n2
u′

2 = 0 on Σ, (76)

q2∂n2
u′

2 = q1∂n2
u′

1 −
∂2

∂n2
2

(q2u2 − q1u1)vn2
,

+ ∇Γ(q2u2 − q1u1) · ∇Γvn2
on Γ (77)

and further

−∆u′
1 = 0 in Ω1, (78)

u′
1 = ∂n1

(u2 − u1)vn1
+ u′

2 in Γ, (79)

where the tangential gradient ∇Γ is defined as ∇Γ = ∇−∂ni
ni, and vni

= V ·ni,
i = 1, 2.

4.1. First-order shape derivative of the functional

The derivative of functional (10) with respect to the shape is

dJ(Ω2, V ) =

∫

Σ

2(u2 − m)u′
2 + β|q2 − q1|

∫

Γ

H2vn2
, (80)

where H2 is the curvature of the boundary of Ω2. Next we introduce the fol-
lowing adjoint states p1 and p2 as the solutions to

−∆p2 = 0 in Ω2, (81)

∂n2
p2 = −∂n1

p1 on Γ, (82)

∂n2
p2 = 2(u2 − m) on Σ (83)

and

−∆p1 = 0 in Ω2, (84)

p1 =
q1

q2
p2 on Γ, (85)
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respectively. Hence, we obtain

0 =

∫

Ω2

−u′
2∆p2 + p2∆u′

2 =

∫

Γ

−u′
2∂n2

p2 + ∂n2
u′

2p2, (86)

0 =

∫

Ω1

−u′
1∆p1 + p1∆u′

1 =

∫

Γ

−u′
1∂n1

p1 + p1∂n1
u′

1. (87)

In view of the boundary conditions in (75)-(79) and (81)-(85) we get
∫

Σ

2(u2 − m)u′
2 =

∫

Γ

−u′
2∂n2

p2 + ∂n2
u′

2p2 − u′
1∂n1

p1 + p1∂n1
u′

1.

Now using (77) and (79) we obtain
∫

Σ

2(u2 − m)u′
2 =

∫

Γ

−u′
2∂n2

p2 − u′
2∂n1

p1 − ∂n1
p1∂n1

(u2 − u1)vn1

+

∫

Γ

p1∂n1
u′

1 +
q1

q2
p2∂n1

u′
1 −

p2

q2

∂2

∂n2
2

(q2u2 − q1u1)vn2

+

∫

Γ

p2

q2
∇Γ(q2u2 − q1u1) · ∇Γvn2

.

In view of (83) and (85) we finally conclude
∫

Σ

2(u2 − m)u′
2 =

∫

Γ

−∂n1
p1∂n1

(u2 − u1)vn1
+

∫

Γ

−
p2

q2

∂2

∂n2
2

(q2u2 − q1u1)vn2

+

∫

Γ

p2

q2
∇Γ(q2u2 − q1u1) · ∇Γvn2

.

In order to further process the right hand side above, we rely on the following
proposition; see Henrot and Pierre (2005, Proposition 5.4.12).

Proposition 2 Let Ω be an open set of class C2 and u : Ω → R of class C2.

Let n be the outer unit normal vector to Ω and H the curvature of Γ = ∂Ω.

Then

∆u = ∆Γu + H∂n2
u +

∂2u

∂n2
2

on Γ,

where ∆Γ is the so-called Laplace-Beltrami operator on Γ.

Since ∆u1 = ∆u2 = 0 and ∂n1
(q2u2 − q1u1) = 0 on Γ, we have

∫

Σ

2(u2 − m)u′
2 =

∫

Γ

−∂n1
p1∂n1

(u2 − u1)vn1

+

∫

Γ

p2

q2
[∇Γ(q2u2 − q1u1) · ∇Γvn2

+ ∆Γ(q2u2 − q1u1)vn2
]

=

∫

Γ

−∂n1
p1∂n1

(u2 − u1)vn1

+

∫

Γ

p2

q2
∇Γ(q2u2 − q1u1) · ∇Γvn2

−∇Γ(q2u2 − q1u1) · ∇Γ

(

p2

q2
vn2

)

,
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and finally
∫

Σ

2(u2 − m)u′
2 =

∫

Γ

[

−∂n1
p1∂n1

(u2 − u1) + ∇Γ(u2 −
q1

q2
u1) · ∇Γp2

]

vn1
.

According to the boundary conditions (72)-(74) and (82)-(85) we get

dJ(Ω2, V )=

∫

Γ

(

q2

q1
− 1

)

(∂n1
p1∂n1

u2+∇Γu2 · ∇Γp1) vn1
+β|q2 − q1|

∫

Γ

H2vn2

=

∫

Γ

[(

1 −
q2

q1

)

(∇p1 · ∇u2)+β|q2 − q1|H2

]

vn2
. (88)

4.2. Derivative with respect to the conductivity q1

We consider small perturbations of the conductivity q1 of the form qε
1 = q1 +

εq′1. Denote by uε
1 and uε

2 the solutions of (70)-(74). Formally, we define the
derivatives u′

1 and u′
2 by

u′
1 = lim

ε→0

uε
1 − u1

ε
and u′

2 = lim
ε→0

uε
2 − u2

ε
. (89)

Substituting (89) in (70)-(74) we get the following equations for u′
1 and u′

2:

−∆u′
2 = 0 in Ω2, (90)

q2∂n2
u′

2 = 0 on Σ, (91)

q2∂n1
u′

2 = q′1∂n1
u1 + q1∂n1

u′
1 on Γ (92)

and

−∆u′
1 = 0 in Ω1, (93)

u′
1 = u′

2 in Γ. (94)

We assume that q1 6= q2 as q1 = q2 leads to a trivial situation. Therefore, the
derivative of J with respect to q1 is

dJ (Ω2, q1, q2)(q
′
1) =

∫

Σ

2(u2 − m)u′
2 + sign(q1 − q2)βq′1P(Γ). (95)

The term
∫

Σ
2(u2−m)u′

2 in (95) can be computed in a similar way as in Section
4 introducing the adjoint states (81)-(85). From Green’s formula for p1 and p2,
respectively, we get
∫

Σ

2(u2 − m)u′
2 =

∫

Σ

∂n2
p2u

′
2 =

∫

Γ

−u′
2∂n2

p2 − u′
1∂n1

p1 + p2∂n2
u′

2 + p1∂n1
u′

1.

(96)

Finally, using the relations (81)-(85) and (90)-(94) we obtain

dJ (Ω2, q1, q2)(q
′
1) = −

q′1
q2

∫

Γ

p2∂n1
u1 + sign(q1 − q2)βq′1P(Γ). (97)
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5. Numerical results

Now we briefly sketch our algorithmic approach and report on numerical results
obtained by our combined shape and topology optimization technique.

5.1. Algorithm

For some ε > 0, the topological derivative Tε is defined as

Tε = (ε|SN−1
ε |)−1

4
∑

k=1

Tk,ε.

We initialize our algorithmic procedure by Ω2 := Ω and

Ω1 := {x ∈ Ω | Tε(x) < γ min
y∈Ω

Tε(y)},

where 0 < γ < 1 is a given threshold.
Exploring a range of pre-selected ε- and γ-values, we choose the parameter
combination which gives the lowest value of J (Ω2, q1, q2). Using a moderate
number of parameter combinations, this start-up procedure is usually quite
fast.

After this initialization of the domains by topological sensitivity, the re-
maining iterations are as follows: First we update the shape using the shape
derivative in a steepest descent framework. According to (88) the steepest de-
scent direction is given by

vn2
= −

[(

1 −
q2

q1

)

(∇p1 · ∇u2) + β|q2 − q1|H2

]

on Γ.

For the representation and transport of the geometry, i.e., Ω1 respectively Ω2,
according to this velocity we use a level set method (Osher and Fedkiw, 2003;
Osher and Sethian, 1988). Note that due to the nature of shape sensitivity, the
update velocity vn2

normal to the internal boundary of Ω2 is defined only on Γ.
As the transport of domains is achieved by the level set equation

φt + V ‖∇φ‖ = 0 in Ω,

we have to extend vn2
to the entire domain Ω (this yields V in the above

equation). Above, φ represents the level set function which is assumed to be
a signed distance function with φ|Γ = 0. We extend vn2

constant along nor-
mals to Γ. Observe that the level set equation is a partial differential equation
of Hamilton-Jacobi-type. For its appropriate numerical treatment we refer to
Osher and Fedkiw (2003), Osher and Sethian (1988). Having advanced the ge-
ometry, then, in a second step, according to (97), the value of q1 is updated by

q′1 =
1

q2

∫

Γ

p2∂n1
u1 − sign(q1 − q2)βP(Γ)

again within a steepest descent framework. For choosing an appropriate step



Electrical impedance tomography: from topology to shape 931

length, we use a standard Armijo line search procedure with backtracking.
We point out that the shape as well as the q-update procedure might rely

on Newton-type updates as well. This, however, requires the additional work of
solving elliptic systems on Γ and is subject to future research.

5.2. Results

In our two examples reported below, we use a finite volume method for the
discretization of the state equation, with a grid of 50 × 50 elements. The two
examples present different geometries of the conductivity distributions, and dif-
ferent noise levels. In the first example, the geometry of the unknown object is
made of three separate balls, and the noise level is 1%; see Fig. 2. In the second
example we do not have noise in the data, and the geometry is made of three
different objects, one of which is concave; see Fig. 3. In both cases the number of
measurements is M = 60, and the regularization parameter is β = 3.10−8. The
true values of the conductivities are q1 = 1 and q2 = 10. We initialize the algo-
rithm by qinit

1 = 4 and qinit
2 = 10, i.e., we assume the background conductivity

to be known.
In the first example, the value for q1 upon termination of our algorithm after

2000 iterations is q
final
1 = 1.28. In Fig. 2 we plot the result after 2000 iterations.

The left plot depicts the behavior of q1 over the iterations, while the right plot
provides the detection of the inclusion. The geometry after the initialization
by topological sensitivity is shown in light gray, the result upon termination
of our algorithm is represented in darker gray and the true situation is shown
in stripes. In the second example, allowing for 10000 iterations, the algorithm
finds q

final
1 = 0.96. Fig. 3 depicts the result after 10000 iterations.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.5

2

2.5

3

3.5

4

4.5

Figure 2. First example after 2000 iterations, with 1% noise. Left: Conductivity
q1 over the iterations. Right: Initial domain Ω1 after topological sensitivity
(light gray); final domain Ω1 upon termination o the algorithm (darker gray);
true domain Ω1 (stripes).
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Figure 3. Second example after 10000 iterations. Left: Conductivity q1 over the
iterations. Right: Initial domain Ω1 after topological sensitivity (light gray);
final domain Ω1 upon termination o the algorithm (darker gray); true domain
Ω1 (stripes).
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