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COGNITIVE OPTIMIZATION OF AN AUTOMOTIVE REAR-AXLE DRIVE
PRODUCTION PROCESS

While optimizing tolerances in tolerance chainsyasihgle characteristics or objectives of singlegass steps
are considered, there is no information exchangesacall processes. Interdependencies between gsesie
materials, means of production and individualsragctin this environment as well as their effect anduct
variations are usually not fully understood. In erdio face a dynamisation of process specification,
interdependencies have to be identified and intedrin future production. The holistic consideratiof the
process chain focused on the allocation of toleraratlows detection of correlations and interdepeanis in
the production process itself. By this, procesdrchrdormation is traced back to conduct the rightimizations
at the right place in the process chain. But tlweeintelligent controlling mechanisms are needeanalyze and
optimize even complex production systems with rdeltel interdependencies. Such a cognitive sysseabie to
form the core of self-optimizing production systerdsing this cognitive system, the production pescef an
automotive rear-axle drive is optimized in orderntinimize disturbances created by structure-bommend
emissions. Therefore several cognitive technolodgiage been evaluated to fulfil specific tasks iogss
optimization.

1. INTRODUCTION

Due to an increasing amount of competitive presgsheemanufacturing industry faces
a difficult situation. New competitors, who typilyabenerate their competitive advantage
through lower labour costs, are steadily improvihg technology of their production
capabilities and create a massive cut-throat cadtiget[1]. Companies are forced to
innovate continuously to maintain their leadersimproduction technology. At the same
time, production or labour costs must be decreamed productivity increased, since
changing consumer behaviour demands that even atinevproducts have to be placed on
the market at the lowest possible price. Additignadifferences between customers’
requirements and the company’s innovation targetgpticate business [2].
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Technologically demanding products are manufactubgd adoption of modern
production technology.

The increasing complexity of ambitious technolofiseocesses requires a new kind
of controlling mechanisms, which can only be reddme sophisticated optimizations.

2. THE POLYLEMMA OF PRODUCTION

The demand for economical high quality products aefticient and effective
production systems requires new methods to widenotitimal ‘operating range’ of the
production system. In order to achieve less oveaunalt costs, the two main dilemmas
of production technology must be solved, or attleaseduced.

The first dilemma exists between scale and scaope tlze second between planning-
and value-orientation. A production system th&bmused on economies of scope is highly
flexible and realizes one-piece-flow, i.e. therens build-up at any given stage in the
process. Products are produced for a specific mestoather than added to inventory. In
contrast, a production system geared to economiiescale gains cost advantages by
concentrating on robust, repeatable processe®dsitiy product flexibility in this context is
generally expensive and the main constraint inisglthis dilemma. The second dilemma
can be localized between value-oriented produgiiibh little or no planning efforts and an
optimized, planning-oriented production. The comalion of both dilemmas leads to the so-
called polylemma of production (Fig. 1) [3].
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Fig. 1. The polylemma of production

To reduce this polylemma, new strategies for prodaocsystems are required. Self-
optimizing production is one new approach whichlenments value-oriented activities with
increased planning efficiency in order to enhancecgss and product quality. Self-
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optimization offers a new perspective on productml assembly systems by adapting the
systems behaviour to dynamic objectives in techgiokd and organizational areas.
Previously acquired knowledge is transferred anddus new and similar production
environments. An increase in the quality of thedwmaion system, which will secure
sustained production for manufacturing companias,tbus be achieved [4].

3. SELF OPTIMIZATION

Due to changing conditions, the results of planriéag lead to suboptimal operating
points. Interactions between influencing elememid #heir effects on the products are
usually not entirely known, which makes it impossito deliver an accurate statement about
the impact of changes on the total production systenly single elements of a production
system are ever in the focus of an optimizationdésrnthese circumstances the behaviour
of a production system cannot be predicted entigdysome elements or sub-systems may
affect others. A possible solution to this problera system designed to pursue different
objectives and adapt its behaviour depending oma¢hgal conditions. While a change in the
system’s behaviour is controlled externally, i.g. Humans, the decision’s effect on the
entire system is to be conceivably automated. Tdeptation and modification of related
elements would then be decided by a technical syste

This results in increased value-orientation as agltecreased planning effort, which
both support the solution of the polylemma of preichn.

Self-optimizing elements can replace the curreaticstplanning and management
processes in both organizational and technolodiekls [5]. The continuation of this idea
leads to self-optimizing production as a concepioweérall optimization. In any defined
system, the principle of self-optimization descsibthe continuous repetition of the
following three actions [6]: Analysis of the curtesituation, determination of the system
targets and adaptation of the system behaviour.

In a broader sense, a self-optimizing system is &bhccomplish a defined objective.
While classic closed control loops dictate the eha of the system by means of externally
introduced target parameters, a self-optimizingesys on the other hand, is able to redefine
the various sub-objectives and adapt the contaxigss dynamically.

In the following concepts, self-optimization is lisad within technological processes,
while also other levels of production systems cardzussed.

An identified issue is to dynamically adapt singlbjectives within a production
process to reach the desired function of the prioddibile the function of the product is the
superior objective, adapted objectives can be aindimensions of the product.
A dynamisation of crucial process parameters vatluce costs, because other parameters
can be expanded without losing the required prodhetracteristics. Simultaneously, the
flexibility of the production process in referentee changes of the product will increase
significantly.
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Within the research project ‘Integrative Productidechnology for High-Wage
Countries’ of RWTH Aachen University, a project ¢ptimize production processes by
applying cognitive technologies was defined, nanGatnitive Tolerance Matching'.

The purpose is to analyze an entire production froamufacture to final assembly,
monitoring the resulting quality, in order to iaite adequate optimizations.
Interdependencies between variations in the pramlugirocess and the resulting product
have to be identified to build an adequate modehefprocesses. In order to detect these
interdependencies, every parameter that can havenpact to the function of the final
product is measured.

To conduct the optimizations, information is seatlto the correct place within the
process chain. This requires intelligent contrglimechanisms. Thus the aim is to develop
a control system for production processes usingnitwg technologies, that is able to
analyze and optimize even complex production systeith multi-level interdependencies.
Such a cognitive system forms the core of a sdifroping factory. [7]

Cognitive Tolerance Matching uses a cognitive aedhure called Soar as well as
technologies like artificial neural networks andiaanining to build a cognitive system
acting as a self-optimizing controlling application

3.1. SOAR

Soar is a cognitive architecture based on the egdiems of GPS and OPS5. In Soar,
target-oriented problem solving takes place as wistee search in problem spaces. The
search consists of a successive application ofatqesr until the target situation is reached.
In addition to classical planning systems, the dear the problem space is implemented in
a complex decision cycle. For knowledge represemaBoar offers two concepts: a short-
term and a long-term memory.

Information processing is conducted in two phaskeshe first phase, the knowledge
search phase, productions of the long-term menveych work on the working memory,
fire. This process generates new objects, whichtuim activate other productions.
In addition, preferences, which are used in theorsgcphase, are generated. Then, the
decision procedure selects an operator using tio@ldaowledge in the short-term memory.
By successive application of operators, a targkt@ireached. In case of a dead end, a sub-
target is generated to lead the search processf die dead end. If the dead end cannot be
solved in this way, problem space independent neshis like back-tracking are used. To
avoid dead ends, a chunking learning mechanisittiadéed each time a route out of a dead
end was found. If an agent finds itself in the saibeation later, the learned rule fires and
the dead end is avoided. Additionally, reinforcetnarning remembers decisions by
reward points given for reaching a target or atsubet.

Soar is already used very successfully to simiiatean behaviour, e.g. for robots and
steering artificial enemies in flight simulatorsrgE prototypes of a Soar-based systems for
process optimizations are also very promising. [8].
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3.2. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks can be described as @nitive architecture with sub-
symbolic information processing [9]. Artificial neans are a technical approach of abstract
modelling which emulates the processes of a biokdgierve cell. Like a biological nerve
cell, artificial neurons possess input channeldusedetect signals in the form of input
values and one output channel to provide outputesl

An artificial neural network can be trained withpbesticated non-linear functions.
Like in biological neural networks, the trained kedge in artificial neural networks is
represented in the weight structure of the neurbnshe case of supervised learning, the
network is trained with a set of known input andresponding output samples; the margin
of error within the network can be identified usthg set-actual comparison. [9]

3.3. DATA MINING

Data Mining tools and algorithms are used to desécictures within the production
data, leading to knowledge that can be used toel@nptimization decision. Data Mining
also can be used to reduce model complexity byyaisalof the influence of single
parameters or characteristics. So data not beimpriiant can be identified in order to
concentrate on important data.

3.4. A COGNITIVE SYSTEM ARCHITECTURE

With respect to the tasks mentioned, focus is itdlauself-optimizing control system
using the technologies described. In the followiagcombination of data mining tools,
artificial neural networks and Soar is introducesl @ possible solution to optimize
sophisticated production processes, arranged wihrd to their ability to fulfil the tasks
of cognitive information processing in productigistems.

First, production data is analysed by data miningorithms to reduce model
complexity and to detect main influence parametéhen, neural networks are trained to
emulate the behaviour of the production system.

Soar generates decisions from existing rules ahdatas or extends them during their
application. Soar conducts a variation of manuf@ctuparameters, learns from the effect
of the particular application and transforms tmewledge into new rules.

Soar is the main element in the proposed architecttivaries production parameters
and neural networks subsequently evaluate thesameder sets. Finally, reinforcement
learning allows Soar to also learn from the resultss ensures an effective and efficient
search in the space of possible production parameiféhe project team implemented
a special clustering of achieved targets and dtmeguwlistribution of reward points to enable
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Soar to learn for future problems, so results froerely similar problems are taken into
account.

The detailed interaction of the combined systenmsgsnized as follows: Starting with
a given vector of parameters and a basic set ekriBoar conducts a variation of these
parameters and sends it to the pre-trained neatadonk, which evaluates the parameter sets
and sends obtained results, thus the product deaisics assumed to be produced in the
real production system, back to Soar. The resuiés aalculated using the networks’
knowledge of the production processes.

This procedure is repeated until the results obthiby the neural network show
conclusively that all product demands would be methe actual production. Then this
parameter set is used in the real production psodéshe created product fulfils all the
demands, Soar receives a success message. Oth@mnwidata will also be fed back, to be
able to learn from any miscalculations and to airtiee rules used. If derivations occur, the
network will be re-trained. This enables the systeradapt to the new situation and to use
its new knowledge for future decisions.

Decisions are therefore made by a systematic decmaiaking process performed by
Soar. On the one hand Soar considers fixed ruldsioivn correlations in the production
system, on the other hand reinforcement learningused to obtain further process
knowledge. Improvements can be achieved systerfigtiead more quickly than by
algorithms that are not able to learn from simiédready solved problems.

4. CURRENT APPLICATIONS

4.1. BMW REAR AXLE DRIVE PRODUCTION

The appliance of the developed methods demands aase which has been initiated
in cooperation with WZL of the RWTH Aachemildersity, Fraunhofer IPT and BMW

Processchain
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Fig. 2. Interrelationship between process chainmogkect objective
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Group. For that purpose a project to optimize tihatted acoustic of rear-axle-
transmissions has been defined. The challengenliee holistic examination of the entire
process chain, implying the production of the geath system for power transmission and
the complete assembly process of the differertfaigl. 2).

Challenge

The effect regarding the driving comfort of modewhicles represents an important
criterion for customers deciding to buy a certaan @he acoustic behaviour can be regarded
as a fundamental differentiating factor betweers.ciherefore, the noise level of vehicles
has become more important during the last years. dijjective of the development and
production of rear-axle-transmissions is conseduenxcellent noise behaviour in addition
to its reliability. The challenge in productiondién controlling the tolerance chain and its
interdependencies. As an example the positioneotdbth contact can be observed, which is
basically determined by the gear cutting. Distartdhue to the hardening of the parts, the
finish by lapping the gear sets and finally theeadsly position in the casing can have
a significant impact on the position of the tootmtact. In addition to the calibration of the
process parameters, tolerances are the fundanfantat. This example demonstrates the
complexity of this process chain.

The objective of the use case is to analyze tlegantions of the various tolerances and
its impact on the rear-axle-drive’s noise behavi@ptimizing the production process in the
following will lead to improved competitiveness. driafore, a 3-step approach is developed
as follows:

1) Analysis of dependencies (ldentifying most digant parameters), 2) Knowledge
acquisition about the effects of each productiorapeter and tolerance and 3) Control
of process parameters with Cognitive Tolerance Mats(CTM).

Analyzing the process chain

The analysis of dependencies within the process ademands a consistent collection
of measured data of a spot sample of a sufficierduent of parts. Therefore, a lot of 80 gear
sets is accompanied during manufacturing and medsfter each production step. For that
purpose, special testing devices and above all @Wdinate measuring machines are used
to check the flank of tooth topography and typigahlity characteristics for tooth systems
like true running and flank pitch. The objectivemsximizing the information gain about the
geometrical properties of the gear sets duringptbeuction process. Subsequent to the gear
set production, inspected subassembly componestseployed to assemble rear-axle
transmissions using the checked gear sets. Thenagsies completely documented, to gain
information about the relative position between dhniee pinion and the crown gear and in
addition about the pre-load of the bearings. Thisenbehaviour is subsequently detected
using a custom-built rear-axle-transmission acosdest bench. The gauge for the emitted
sound is the structure-borne noise applied toitsedrder of meshing. Matching the results
of the test bench with the subjective evaluationtted noise behaviour of the rear-axle
transmissions in the car by test operators showsllexit correlation.
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The evaluation of the measured data turns out ta geeat challenge because of the
multiplicity of parameters, which cannot be handigdusing basic statistical methods. An
approach is the application of multivariate methotlanalysis as well as data mining tools
like artificial neural networks and regression sr.eBarticularly structure detection methods
like previously mentioned data mining tools helpsahalyse the interdependencies within
the tolerance chain. An implementation of thesehoddt however implies an exact data
preparation including a correlation analysis witthe data array to avoid highly correlating
records and a variance analysis to delete recadsdpa lack of information. The results of
the examinations with data mining deliver the mi@ators having an impact on the rear-
axle-transmission noise behaviour. Subsequentlyetiiect of the main factors can be
validated by series of tests using a method naresigjd of experiments (DoE).

Controlling the process chain viaCTM

Following the identification of the factors havirtpe main impact on the noise
behaviour and developing knowledge about theirceftBrection, strategies to implement
cognitive control loops have to be modelled. Themef investigations must be carried out
which parameters of the process chain can be neghsuigeneral and which ones must be
measured in any case. Furthermore, the inspectyole ¢cime in the process has to be
considered and the measured data must be autohlyapicgpared for continuous evaluation
with CTM. Implementation of intervention zones fttre CTM system is significant to
control the production steps of capital importangethis juncture the development leads
from a quality backward stream to a quality forwatleam in process direction. The
objective is the functionally oriented productioithwthe potential to reproduce parts having
variations due to tolerances in a process steqjugtng the following one with CTM. This
leads to improved noise behaviour with simultanemrssideration of minimisation of scrap
and consequently to a continuous increase of cotiveeiess.

4.2. SHAFT-TO-COLLAR CONNECTION

In addition to the rear-axle drive applicationoa ¢f development work is conducted
with a much simpler manufacturing case. This isdeéeto instantly evaluate if Cognitive
Tolerance Matching brings the expected results.ti@se ends, a simple shaft-to-collar
connection has been developed. The connection cewlelements of manufacture and
assembly, which offer a lot of possibilities to lugnce the production process. This
application will assist in the development and eaibn of cognitive technologies for
production processes and serve as a demonstrattireo€ognitive Tolerance Matching
system.

The connection consists of two rigidly connectedlacs fitted around a cylindrical
shaft, which is designed to fail when a specifiedjtie is applied to the shaft (Fig. 3). One
collar features a tapered press fit. The turningup&ters and the torque for assembly are
defined by the cognitive system.
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Fig. 3. Shaft-to-collar connection demonstrator

The second collar is composed of four separates,paftwhich three smaller pieces
form an inner ring, which can be tightened or loexkaround the shaft manually. Adjusting
the pressure exerted by the collar on the shafiggmthe value of torque the connection can
stand without slipping. The goal of the cognitiystem is to reach a constant torque at
which the whole connection begins to slip. Therefirhas to react to changing materials
and other influences in manufacturing and assemhlyhis manner, the self-optimizing
system is able to accomplish the defined goal bgfieing the sub-objectives and adapting
the production process.

5. CONCLUSIONS

The production industry is under increasing presgiue to global competition. To
retain economically important production, an exawderstanding of the production process
iIs mandatory. The new approach bases on self-gptighielements, which simultaneously
emphasize value-oriented processes and decreasedéssary manual planning effort. The
underlying goal is the independent enhancemengstémn, process and product quality.

The approach presented in this paper deals witbgaittive controlling system for
production systems, whose intelligent combinatiérSoar and artificial neural networks
enables it to adapt to changing conditions quiekig efficiently.
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