ArticleOriginal scientific text

Title

Pancyclism and small cycles in graphs

Authors , , ,

Abstract

We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that d(u)+d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices u and v such that d(u)+d(v) ≥ n+z, where z = 0 when n is odd and z = 1 otherwise, then G contains a cycle of length m for each 3 ≤ m ≤ max (d_C(u,v)+1, [(n+19)/13]), dC(u,v) being the distance of u and v on a hamiltonian cycle of G.

Keywords

cycle, hamiltonian, pancyclic

Bibliography

  1. D. Amar, E. Flandrin, I. Fournier and A. Germa, Pancyclism in hamiltonian graphs, Discrete Math. 89 (1991) 111-131, doi: 10.1016/0012-365X(91)90361-5.
  2. A. Benhocine and A. P. Wojda, The Geng-Hua Fan conditions for pancyclic or hamilton-connected graphs, J. Combin. Theory (B) 42 (1987) 167-180, doi: 10.1016/0095-8956(87)90038-4.
  3. J.A. Bondy, Pancyclic graphs. I., J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
  4. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).
  5. R. Faudree, O. Favaron, E. Flandrin and H. Li, The complete closure of a graph, J. Graph Theory 17 (1993) 481-494, doi: 10.1002/jgt.3190170406.
  6. E.F. Schmeichel and S.L. Hakimi, Pancyclic graphs and a conjecture of Bondy and Chvátal, J. Combin. Theory (B) 17 (1974) 22-34, doi: 10.1016/0095-8956(74)90043-4.
  7. E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.
  8. R.H. Shi, The Ore-type conditions on pancyclism of hamiltonian graphs, personal communication.
Pages:
27-40
Main language of publication
English
Received
1995-11-03
Published
1996
Exact and natural sciences