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Abstract
An excessive use of antimicrobial agents poses a risk for the selection of resistant bacteria. Of particular interest are antibiotics 
that have large consumption rates in both veterinary and human medicine, such as the tetracyclines and macrolide-
lincosamide-streptogramin (MLS) group of antibiotics. A high load of these agents increases the risk of transmission of resistant 
bacteria and/or resistance determinants to humans, leading to a subsequent therapeutic failure. An increasing incidence of 
bacteria resistant to both tetracyclines and MLS antibiotics has been recently observed. This review summarizes the current 
knowledge on different tetracycline and MLS resistance genes that can be linked together on transposable elements.

Key words
antibiotics, genetic determinants of resistance, transposons, transmission of resistance

INTRODUCTION AND BACKGROUND

An excessive use of antimicrobial agents poses a risk for 
the selection of resistant bacteria, which could be either 
causative agents of a specific disease or a reservoir of genetic 
determinants of resistance. The latest surveillance report on 
antimicrobial consumption in the community (i.e. outside 
hospitals) lists macrolides and tetracyclines as the third and 
fourth most commonly used subgroups of antibacterials 
in Europe [1]. Even more pronounced, however, is their 
use in veterinary medicine, where tetracyclines are the 
most frequently sold therapeutic antibiotics (37 %), and 
macrolides account for 8% of the total sales, and are the 
fourth most frequently sold antibiotic class for veterinary use 
within Europe [2]. Because of their wide usage in veterinary 
medicine, their presence in the environment and agriculture 
is ubiquitous. Table 1 lists the tetracycline and macrolide-
lincosamine-streptomycin (MLS) antibiotics that have been 
approved for human or veterinary use.

Tetracyclines are broad spectrum antibiotics discovered 
in the late 1940s. They block the attachment of charged 
aminoacyl-tRNA to the ribosomal acceptor (A) site, and 
so interfere with the protein synthesis by preventing the 
introduction of new amino acids to the nascent peptide 
chain. They are effective against a wide range of gram-positive 
and gram negative bacteria, chlamydiae, mycoplasmata, 
rickettsiae and protozoan parasites [3, 4]. Due to their low 
cost, they have been widely used in veterinary medicine for 
the treatment of various infections, such as colibacillosis, 
chronic respiratory disease, enteritis and many others [3]. 
In Europe, tetracyclines belong to the most widely used 
veterinary antibiotics, ranging from 12.4 up to 102.8 mg/kg 
of produced meat [5]. Moreover, tetracyclines have also been 
used in aquaculture [6] and agriculture [7].

Table 1. List of approved tetracyclines, macrolides, lincosamides and 
streptogramins for human or veterinary use in European Union (2011_
Adriaenssens, 1999_EMEA).�  
http://www.chemeurope.com/en/encyclopedia/ATC_code_J01.
html#J01AA_Tetracyclines

Tetracyclines Macrolides Lincosamides Streptogramins

Chlorotetracyclineb Azithromycinc Clindamycinc Pristinamycinc

Clomocyclinec Clarithromycinc Lincomycinb Quinupristin/
Dalfopristinc

Demeclocyclinec Dirithromycinc Pirlimycina Virginiamycina

Doxocyclineb Erythromycinb

Lymecyclinec Flurithromycinc

Metacyclinec Gamithromycina

Minocyclinec Josamycinb

Oxytetracyclinea Kitasamycina

Penimepicyclinec Midecamycinc

Rolitetracyclinec Miocamycinc

Tetracyclinea Oleandomycinb

Rokitamycinc

Glycylcyclinesc* Roxithromycinc

Spiramycinb

Telithromycinc

Tildipirosina

Tilmicosina

Tulathromycina

Troleandomycinc

Tylosina

Tylvalosina

* A new class of antibiotics derived from tetracycline, with tigecycline as the only glycylcycline 
antibiotic approved for antibiotic use by now
a veterinary use only
b veterinary and human use
c human use only
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To-date, 59 tetracycline resistance genes (tet genes) have 
been described. They can mediate resistance to tetracyclines 
by three different mechanisms: ribosomal protection, efflux 
and enzymatic inactivation of the active compound [8, 9].

MLS antibiotics are three chemically distinct, but 
functionally similar antibiotic classes. Macrolides with 
mycarose sugars on the fifth carbon in the lactone ring, 
lincosamides and streptogramin A inhibit the peptidyl 
transferase reaction [10], whereas macrolides of the 
erythromycin group prevent the early events of peptide 
elongation, and streptogramin B blocks the exit tunnel 
through which the nascent peptide chains exit the ribosome, 
resulting in the release of incomplete peptides [10, 11].The 
first described macrolide erythromycin has a moderately 
broad spectrum of activity, while newer semi-synthetic 
derivatives (e.g. clarithromycin and azithromycin) have a 
broader spectrum and are used in human medicine for the 
treatment of upper and lower respiratory tract infections, 
infections of the skin and soft tissue, sexually transmitted 
diseases, community-acquired pneumonia and atypical 
Mycobacterium infections. Together with lincosamides, 
macrolides are also used for the treatment of group B 
streptocoocal infections, or for the intrapartum prevention 
of Streptococcus agalactiae neonatal infections in penicillin 
hypersensitive patients [12, 13]. In combination with 
fluoroquinolones, erythromycin is commonly used in the 
therapy of severe infections caused by Campylobacter spp. 
[5]. In veterinary medicine, macrolides (e.g. tylosin) are 
recommended for the treatment of respiratory infections 
in cattle, swine and poultry. Further indications include 
treatment of proliferative enteropathy, enteritis and arthritis 
in swine, necrotic enteritis in poultry, and mastitis in cattle 
caused by Gram-positive bacteria.

A total of 92 genes that confer resistance to MLS antibiotics 
have been described to-date [14]. They can be roughly 
divided into three groups, depending on the mechanisms 
by which they confer resistance to one or all of these groups 
of antibiotics. Three main mechanisms of resistance to MLS 
antibiotics have been described: methylation of rRNA (target 
modification), active efflux and inactivation of the antibiotic. 
Target modification is achieved via the action of the protein 
product of one of more than 42 different erm (erythromycin 
rRNAmethylase) genes. They confer crossresistance between 
macrolides, lincosamides and streptogramin B (so-called 
MLSB resistance) and evoke most concerns. Active efflux and 
inactivating enzymes represent two additional mechanisms 
of resistance that are targeted only to particular antibiotics 
or antibiotic classes. For example, mef genes encode for 
macrolide efflux, msr genes for efflux of macrolides and 
streptogramin B, and the lsa gene for efflux of lincosamides 
and streptogramin A.

There is a vast body of information overseen by traditional 
microbiologist on the non-antimicrobial use of tetracyclines 
and macrolides in clinic and research, as recently reviewed 
by Aminov [15]. This type of therapy often includes low-
dose, long-term exposure to antibiotics, which promotes 
dissemination of antibiotic resistances among commensal 
and pathogenic microbiota. Some progress has been made in 
developing compounds that retain their immunomodulatory 
activities, while abolishing antimicrobial activities [15], but 
continuous efforts are necessary in order to completely 
circumvent the selective pressure exhibited on the microbiota 
through this type of therapy.

The occurrence of bacteria resistant to both tetracyclines 
and MLS antibiotics has been observed [16, 17, 18]. This 
review will summarize the current knowledge on the topic of 
genetic linkage of different tetracycline and MLS resistance 
genes, and possible risks coupled with it for public health.

TETRACYCLINE AND MLS RESISTANCE GENES AND 
TRANSPOSONS

Identification of antibiotic resistance genes provides valuable 
information; however, knowledge about their association 
with mobile genetic elements is crucial for assessment of 
the risk for acquisition and dissemination of antimicrobial 
resistance. Transposable elements are by definition ‘specific 
DNA segments that can repeatedly insert into one or more 
sites in one or more genomes; [19]. They can be distributed 
on both chromosomes and plasmids, and are able to interact 
by recombination between elements and/or by transposition 
into other elements, forming all kinds of novel chimeric 
structures [20, 21]. Their complex nomenclature has been 
revised, and since 2008 all newly-discovered, fully sequenced 
and/or functional autonomously transposable elements that 
show <100 % sequence identity with the closest relative, 
were designated with a new Tn number. The acronyms ICE 
(integrative conjugative elements) and IME (integrative 
mobilizable element) are retained, but now interchangeable 
with CTn or MTn for conjugative transposon or mobilizable 
transposon, respectively, if conjugation or mobilization can 
be proved [22]. The first conjugative transposon identified in 
bacteria was Tn916 from E. faecalis[23], and was carrying the 
tetracycline resistance. Since then, a vast amount of different 
transposable elements have been identified, including those 
that carried several resistance and virulence genes [24]. Under 
the pressure of any of antibiotics to which the element confers 
resistance, the whole transposon is retained and, accordingly, 
multiple antibiotic resistance genes remain in the population. 
They can persist for decades in animal husbandry due to co-
selection, fitness and other phenomena [25]. An overview of 
transposons and selected mobile genetic elements conferring 
resistance to tetracyclines and/or MLS antibiotics discussed 
in this review is given in Table 2 and Figure 1.

There is a variety of transposons conferring tetracycline 
resistance. They are most often associated with tetracycline 
resistance, carry the tet(M) gene and belong to the Tn916 
transposon family. An excellent review on this topic was 
recently published and is recommended for more information 
on the subject [19]; however the main focus of this study 
are transposons carrying both resistance determinants, 
against tetracycline and MLS antibiotics, some of which 
belong to the Tn916 transposon family and will be discussed 
in detail. Elements associated with MLS resistance are the 
Tn917 transposon that carries the erm(B) gene [26] or MEGA 
element (macrolide efflux genetic assembly, 5.5kb) that carries 
the mef(E)-msr(D)operon [27]. The Tn916 transposon family 
has a broad host range and transfer readily to a wide variety 
of Gram-positive and Gram-negative bacteria [19]. The 
integrase (int) and excisase (xis) genes used for identification 
of this group of transposons are indistinguishable by PCR 
methods from the int and xis genes of the Tn1545 transposon 
[28]. They differ by only one nucleotide over approximately 
2 kb. Moreover, the tet(M)genes from these two different 
transposons exhibit 94.5 % nucleotide identity. Nevertheless, 
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Figure 1. Schematic drawing of transposons and selected mobile genetic elements conferring resistance to tetracyclines and/or MLS antibiotics discussed in this review. 
Tn5253 transposon family is shown as a Tn5252 element (LT, left terminal region; CTR, conjugal-transfer related region; RT, right terminal region) with indicated (arrows) 
insertion sites of Tn5251 or other Tn916-like transposons (A, Tn6002; B, Tn5251/Tn916 or SpnRi3ermB-like element; C, Tn916 or Tn6002; D, Tn916, Tn6002, Tn2009 or Tn3872)
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Tn916 and Tn1545 differ in size (18 vs. 25.2kb) and genetic 
content. In addition to the tet(M) gene, Tn1545 also harbours 
other determinants of resistance, i.e. the MAS (macrolide-
aminoglycoside-streptothricin) element and the erm(B) 
element [29]. Thus the co-selection of tetracycline and 
MLSB resistance may occur via the Tn1545 transposon, and 
might be underestimated if isolates were screened only with 
int/xis specific primers [18, 30]. A new Tn6079 conjugative 
transposon of the Tn916/Tn1545-like family that harbours 
two tetracycline resistance genes [tet(M)and tet(L)], and 
one gene conferring MLSB resistance [erm(T)] was recently 
identified in samples from an infant faecal fosmid library 
[31]. The presence of genetic determinants of resistance to 
both tetracyclines and MLS antibiotics was also described 
for other large transposons, such as the CTnDOT family, 
Tn2009, Tn2010, Tn2017, Tn3872, Tn5253, Tn6058, Tn5385, 

Tn6002 and Tn6003 that arose as a combination of smaller 
transposons [20, 27, 32, 33, 34].

CTnDOT family transposons are large conjugative 
transposons from Bacteriodes spp. that carry resistance 
genes against tetracycline (tet(X), tet(Q)) and MLS 
antibiotics (erm(B), erm(F), erm(G)) [35]. Their excision 
and conjugative transfer is dependent on tetracycline, 
although CTnDOTpositiveBacteriodetes spp. are not always 
tetracycline resistant due to their anaerobic nature and the 
fact that tetracycline resistance mediated by the tet(X) gene 
is oxygen dependent [4, 34], they can serve as resistance 
reservoir for other pathogenic bacteria. Dissemination 
of tet(X) resistance gene is of special concern because it 
confers resistance also against third generation tetracycline 
tigecycline[36]. Although the use of this antibiotic is 
strictly regulated, tet(X) has already been observed among 
pathogenic bacteria [37], and sequence similarity of flanking 
regions around tet(X) suggest that its spread is most likely 
due to horizontal transfer of transposons from the CTnDOT 
family [38].

Tn3872 is a composite element resulting from the insertion 
of the erm(B)-containing Tn917 transposon into orf9 of 
Tn916. The association between mefEmsrD and tet(M) was 
found in Tn2009 transposons that have the MEGA element 
inserted into a Tn916-like structure [20]. In addition to that, 
Tn2010 and Tn2017 carry the erm(B) gene due to the insertion 
of the erm(B) element or Tn917, respectively, into a Tn2009 
like structure [27, 39]. Tn6002 is an element resulting from the 
insertion of an erm(B)-containing DNA fragment (the erm(B) 
element) into Tn916[33, 40]. Tn6003 carries determinants of 
resistance to aminoglycosides and streptothricin due to the 
MAS element, which can circularise, excise and turn back 
Tn6003 into Tn6002[32, 41].

Tn5253-like transposons are large composite transposons 
that consist of a Tn916-like element (originally designated 
as Tn5251) conferring tetracycline/MLS resistance, which 
is inserted into the Tn5252 element that harbours the cat 
(chloramphenicol) resistance gene [42]. Members of this 
diverse transposon family are often referred to as ICE 
elements, followed by an acronym of the species where they 
were discovered, and a unique number (i.e. ICESp2905) [43]. 
Tn5385 is a composite 65 kb large transposon comprising 
several smaller mobile elements, including an 18-kb 
conjugative transposon (Tn5381) conferring resistance to 
tetracycline [tet(M)], a 26-kb transposon (Tn5384) conferring 
MLSB resistance (originally named erm(AM)], but now 
renamed as erm(B), as well as resistance to gentamicin 
(aac(6’)-aph(2’’)) and mercuric chloride (merRAB), and 
a Tn552-like staphylococcal beta-lactamase transposon 
conferring resistance to penicillins (bla). The transposon 
further confers resistance to streptomycin via the aadE 
gene [29]. ICESp2905 is a widespread erm(A)- and tet(O)-
carrying genetic element of S. pyogenes, resulting from 
one ICE (ICESp2907) being integrated into another ICE 
(ICESp2906) of clostridial origin [44]. Originally, the MLS 
resistance determinant was named erm(TR), but it has been 
renamed to erm(A).

Giovanetti et  al. [45] genotyped clinical isolates of 
S.pyogenes, and in addition to the erm(B) and tet(M) genes, 
they identified a new genetic linkage between the tet(O) and 
erm(A) or mef(A) genes. The authors demonstrated that the 
tet(O) gene moved in conjugation experiments with and 
without the erm(A) gene, but always with the mef(A) gene. 

Table 2.  Summary of transposons conferring resistance to tetracycline 
and/or MLS discussed in this review

Transposon tet gen Comments Size Reference

Tn916* tet(M) 18 kb
(Franke and 
Clewell, 1981)

Tn917 erm(B) 7 kb
(Shaw and 
Clewell, 1985) 

MEGA mef(A)-msr(D) operon 5.5 kb
(Del Grosso 
et al. 2006)

Tn1545* tet(M)
MAS and erm(B) elements 
inserted into Tn916-like 
structure

26.5 kb
(Cochetti et al. 
2008) 

CTnDOT 
tet(Q) or 
tet(X)

erm(F), erm(B) and aad 65-100 kb

(Gupta 
et al. 2003; 
Shoemaker 
et al. 2001)

Tn2009* tet(M)
MEGA element inserted 
into Tn916-like structure

23.5 kb
(Del Grosso 
et al. 2004)

Tn2010* tet(M)
erm(B) element inserted 
into Tn2009 

26 kb
(Del Grosso 
et al. 2006; 
Li et al. 2011)

Tn2017* tet(M)
Tn917 inserted into 
Tn2009

28.5 kb
(Del Grosso 
et al. 2009)

Tn3872* tet(M) Tn917 inserted into Tn916 24 kb

(Cochetti 
et al. 2007; 
McDougal 
et al. 1998)

Tn5253 tet(M)
Tn916-like transposon 
inserted into Tn5252 
carrying the cat gene

40-65 kb
(Ayoubi et al. 
1991; Mingoia 
et al. 2011)

Tn6002* tet(M)
erm(B) element inserted 
in Tn916

21 kb
(Warburton 
et al. 2007)

Tn6003* tet(M)
MAS element inserted into 
Tn6002

25 kb
(Cochetti et al. 
2007)

Tn5385 tet(M)

tet(M) (Tn5381); aac(6’)-
aph(2’’) (Tn4001); erm(B) 
and merRAB (Tn5384); bla 
(Tn552); aadE

65 kb
(Rice and 
Carias, 1998)

Tn6079*
tet(M) 
and tet(L)

Tn916/Tn1545-like 
transposon carrying the 
erm(T) gene

26 kb
(de Vries et al. 
2011)

ICESp2905 tet(O)
erm(A) (ICESp2907 
integrated into ICESp2906)

65 kb

(Brenciani 
et al. 2011; 
Giovanetti 
et al. 2012)

* Tn916-like elements
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This association of tet(O) and mef(A) is due to the prophage 
Φm46.1 identified in S. pyogenes[46]. The association of tet(O) 
with the erm(B) gene was further described by Martel et al. 
[47]. All in all, as more sequence information is revealed, 
and new functional metagenomics approaches are applied in 
the research of the resistome, it is reasonable to expect that 
new transposable elements will continue to be discovered. 
Nevertheless, their functionality has to be proved in order 
to be designated by a new Tn number [22, 31].

TRANSMISSION OF TETRACYCLINE AND MLS 
RESISTANCE

In vitro transfer of antimicrobial resistance has been studied 
by many authors. Vignaroli et al. [48] investigated isolates 
of enterococci co-resistant to tetracycline and erythromycin 
originating from meat and faeces of chickens and pigs. They 
found that under in vitro conditions the isolates from faeces 
more readily transferred the resistance to enterococci of 
human origin. Jasni et al. [49] demonstrated reciprocal genetic 
exchange between E. faecalis and C. difficile, where the Tn5397 
transposon carrying the tet(M) gene was incorporated at a 
single specific target site. Wasels et al. [50] demonstrated the 
transfer of Tn6194 that carries the erm(B) gene between C. 
difficile and E. faecalis. Florez et al. [51] identified a Tn916-like 
transposon carrying the tet(M) gene in plasmids from two 
Lactococcus lactis strains isolated from raw milk starter-free 
cheese. Conjugation experiments have shown that only the 
transposon, but not the whole plasmid, could have been 
transferred from L. lactis to E. faecalis. Enterococci originating 
from a total production chain of swine meat commodities were 
shown to successfully transfer the Tn916/1545 transposon 
family carrying the tet(M) gene to other enterococci and L. 
innocua in both filter mating experiments and mating trials 
performed in meat matrices [52]. Transfer of tetracycline and 
erythromycin resistances from a human E. faecalis isolate 
was also demonstrated in a sausage fermentation model, even 
without antibiotic pressure and as early as within two days 
of fermentation [53]. In this model, transconjugant bacterial 
strains were identified among enterococci, pediococci, 
lactobacilli and staphylococci. In another study, a higher 
transfer rate for both vancomycin and tetracycline resistance 
was observed in fermented sausages compared to cheese [54]. 
Transfer of tetracycline resistance (i.e. the tet(M) gene) from 
Lactobacillus isolates originating from fermented dry sausages 
to E. faecalis and L. lactis was demonstrated in conjugation 
experiments by Gevers et al. [55]. Although the transposon 
Tn2009 was originally identified in S. pneumoniae as non-
mobilizable[20], in a later study, however, its conjugation 
was proved between a plenty of various bacteria, such as 
Acinetobacter junii, Citrobacter spp., E. coli, Enterobacter 
cloacae, Klebsiella spp., Pantoeaagglomerans, Proteus spp., 
Pseudomonas spp., Ralstoniapickettii,Stenotrophomonasmalto
philia, E. faecalis, Neisseria mucosa and Neisseria perflava[56]. 
Even the large Tn5253 transposon or its related variants 
were conjugally transferred under laboratory conditions 
from S. pneumoniae to S. pyogenes and other streptococci, 
as documented in previous reports [42, 57].

Transfer of antimicrobial resistance, however, is 
highly influenced by the complexity of microflora and its 
interactions with the host. Moreover, it is presumed that in 
vitro models underestimate the potential risk for resistance 

transfer compared to in vivo models [58, 59]. Therefore, 
to appropriately assess the risk for horizontal spread of 
antimicrobial resistance, many authors have recently 
performed experimental studies under in vivo conditions. 
Moubareck et al. [60] carried out experiments on gnotobiotic 
mice, and demonstrated the transfer of vanA (vancomycin 
resistance) and erm(B) among enterococci colonising the 
intestine. Although tylosin did not significantly increase the 
transfer of vancomycin resistance under in vitro conditions, 
it significantly increased intestinal colonization of the 
treated mice by vancomycin-transconjugants. A similar 
observation was reported by Doucet-Populaire et  al. [61], 
who found that administration of tetracycline to gnotobiotic 
mice increased by 20-fold the transfer of Tn1545 from 
E.faecalis to L. monocytogenes. On a model of gnotobiotic 
mice, Jacobsen et al. [62] demonstrated that the tet(M) and 
erm(B) genes may transfer from Lactobacillus plantarum 
originating from fermented sausages to human isolates 
of E.  faecalis. This finding supports the hypothesis that 
microorganisms of food origin may represent an important 
source of genetic determinants of resistance for microflora 
colonising human intestines. However, it should be kept in 
mind that experiments in gnotobiotic animals are performed 
under artificial conditions, i.e. in the presence of relatively 
high numbers of potential recipients and in the absence of 
competitive microflora. A recent in vivo study performed on 
commercial chickens has shown that the spread of a plasmid-
carried erm(B) gene occurs not only within the faecal 
microbiota under both specific (tylosin and lincomycin) and 
non-specific (chlortetracycline) antibiotic pressure, but also 
in the absence of any antimicrobial pressure [63]. Moreover, 
all isolates of enterococci and streptococci that acquired 
the erm(B) gene were also resistant to tetracycline, which 
indicates that tetracycline may co-select for MLSB resistance.

De Leener et  al. [64] compared enterococci of human 
and porcine origin for their resistance profile against 
erythromycin and tetracycline. The erm(B) gene was found 
in 85% of porcine isolates and in all human isolates. The 
tet(M) gene was found in 98 and 89% of the erm(B) positive 
isolates from pigs and humans, respectively. Among the 
erm(B)/tet(M) positive isolates, 77 and 70% isolates of porcine 
and human origin, respectively, carried a transposon of 
the Tn916/Tn1545 family. The authors therefore suggested 
either a mutual spread of resistant enterococci between 
humans and pigs, or the existence of a common reservoir 
of resistant enterococci. The hypothesis that animals can 
be a source of resistant enterococci for humans could be 
supported by the findings of Sorensen et al. [65]. In the latter 
study, the survival of animal derived enterococcal strains 
in the human intestine was investigated in 18 volunteers. 
Transient intestinal carriage of resistant E. faecium of animal 
origin was detected up to 14 days after ingestion, suggesting 
that enterococci of animal origin can survive the gastric 
passage and multiply in the human intestine. This transient 
colonisation increases the risk for transfer of resistance 
determinants within human intestinal microbiota. De 
Vries et al. [31] investigated the diversity of microorganisms 
conferring tetracycline resistance in faecal samples from 
a healthy mother-infant pair one month after childbirth, 
and evaluated potential horizontal transfer of tetracycline 
resistance genes. For that purpose, faecal fosmid libraries 
were functionally screened for tetracycline resistance genes. 
In the mother library, identical tetracycline resistance gene 
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sequences (predominantly tet(O), followed by tet(W) and 
tet(X)) were present in different bacterial families and even 
phyla, which may indicate horizontal transfer within the 
maternal gastrointestinal tract. Although tet genes other 
than those observed in the mother dominated in the infant 
library, tet(O) and tet(W) could also be detected in the infant 
faecal samples. Moreover, tet(M), tet(L) and erm(T) were 
identified within a novel composite transposon Tn6079 in 
the infant library, which indicates a potential for the joint 
spread of tetracycline and erythromycin resistance within 
the infant’s gut.

CONCLUSIONS

The antibiotic classes discussed in this review have been used 
for over 50 years, and still today have large consumption 
rates in human, but even more in veterinary medicine. They 
are listed by the World Health Organization as highly or 
even critically important in the case of macrolides. Rates of 
bacteria resistant to these classes of antibiotics depend on 
the source of isolation and history of antibiotic usage. Co-
resistance between tetracyclines and MLS antibiotics is often 
due to the occurrence of genetic determinants for tetracycline 
and MLS resistance on very promiscuous transposons that 
can interact, recombine and form all sorts of novel chimeric 
elements. This type of genetic linkage on transposons is of 
a very great concern. It increases the risk for transfer of 
resistances to pathogenic species, and enables the co-selection 
of all genes and their retention in the population, leading to 
therapeutic failure and severe consequences.
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