ArticleOriginal scientific text

Title

Acyclic reducible bounds for outerplanar graphs

Authors 1, 1, 1

Affiliations

  1. Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Z. Szafrana 4a, Zielona Góra, Poland

Abstract

For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. G[Vi]i for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that uVi and vVj is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring. If ⊆ R, then we say that R is an acyclic reducible bound for . In this paper we present acyclic reducible bounds for the class of outerplanar graphs.

Keywords

graph, acyclic colouring, additive hereditary class, outerplanar graph

Bibliography

  1. P. Boiron, E. Sopena and L. Vignal, Acyclic improper colorings of graphs, J. Graph Theory 32 (1999) 97-107, doi: 10.1002/(SICI)1097-0118(199909)32:1<97::AID-JGT9>3.0.CO;2-O
  2. P. Boiron, E. Sopena and L. Vignal, Acyclic improper colourings of graphs with bounded degree, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 49 (1999) 1-9.
  3. M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
  4. M. Borowiecki and A. Fiedorowicz, On partitions of hereditary properties of graphs, Discuss. Math. Graph Theory 26 (2006) 377-387, doi: 10.7151/dmgt.1330.
  5. O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3.
  6. O.V. Borodin, A.V. Kostochka and D.R. Woodall, Acyclic colorings of planar graphs with large girth, J. London Math. Soc. 60 (1999) 344-352, doi: 10.1112/S0024610799007942.
  7. M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobsc. Akad. Nauk Gruzin SSR 93 (1979) 21-24 (in Russian).
  8. R. Diestel, Graph Theory (Springer, Berlin, 1997).
  9. B. Grunbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-412, doi: 10.1007/BF02764716.
  10. D.B. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, 2001).
Pages:
219-239
Main language of publication
English
Received
2007-12-13
Accepted
2008-07-04
Published
2009
Exact and natural sciences